Answer
Cooley Landscaping's payments for the loan at 7% interest for the next 7 years are as follows:
- **Annual Payments**: \$4,824.83
- **Semiannual Payments**: \$2,380.84
- **Quarterly Payments**: \$1,182.52
- **Monthly Payments**: \$392.41
Solution
To calculate the different payment plans for Cooley Landscaping's loan, we can use the formula for the present value of an annuity. The formula is given by:
\[
PV = P \times \left( \frac{1 - (1 + r)^{-n}}{r} \right)
\]
Where:
- \( PV \) is the present value (the amount borrowed, which is \( 26,000 \)).
- \( P \) is the payment amount per period.
- \( r \) is the interest rate per period.
- \( n \) is the total number of payments.
### Step 1: Annual Payments
For annual payments:
- Interest rate \( r = \frac{0.07}{1} = 0.07 \)
- Number of payments \( n = 7 \)
We can rearrange the formula to solve for \( P \):
\[
P = PV \times \left( \frac{r}{1 - (1 + r)^{-n}} \right)
\]
Substituting the values:
\[
P = 26000 \times \left( \frac{0.07}{1 - (1 + 0.07)^{-7}} \right)
\]
### Step 2: Semiannual Payments
For semiannual payments:
- Interest rate \( r = \frac{0.07}{2} = 0.035 \)
- Number of payments \( n = 7 \times 2 = 14 \)
Using the same formula for \( P \):
\[
P = 26000 \times \left( \frac{0.035}{1 - (1 + 0.035)^{-14}} \right)
\]
### Step 3: Quarterly Payments
For quarterly payments:
- Interest rate \( r = \frac{0.07}{4} = 0.0175 \)
- Number of payments \( n = 7 \times 4 = 28 \)
Using the same formula for \( P \):
\[
P = 26000 \times \left( \frac{0.0175}{1 - (1 + 0.0175)^{-28}} \right)
\]
### Step 4: Monthly Payments
For monthly payments:
- Interest rate \( r = \frac{0.07}{12} \approx 0.0058333 \)
- Number of payments \( n = 7 \times 12 = 84 \)
Using the same formula for \( P \):
\[
P = 26000 \times \left( \frac{0.0058333}{1 - (1 + 0.0058333)^{-84}} \right)
\]
Now, let's calculate the payments for semiannual, quarterly, and monthly payments.
Solve the equation by following steps:
- step0: Solve for \(P\):
\(26000=\frac{P\left(1-\left(1+0.0058333\right)^{-84}\right)}{0.0058333}\)
- step1: Simplify:
\(26000=\frac{\left(10000000\times 10058333^{84}-10000000^{85}\right)P}{58333\times 10058333^{84}}\)
- step2: Swap the sides:
\(\frac{\left(10000000\times 10058333^{84}-10000000^{85}\right)P}{58333\times 10058333^{84}}=26000\)
- step3: Cross multiply:
\(\left(10000000\times 10058333^{84}-10000000^{85}\right)P=58333\times 10058333^{84}\times 26000\)
- step4: Simplify the equation:
\(\left(10000000\times 10058333^{84}-10000000^{85}\right)P=1516658000\times 10058333^{84}\)
- step5: Divide both sides:
\(\frac{\left(10000000\times 10058333^{84}-10000000^{85}\right)P}{10000000\times 10058333^{84}-10000000^{85}}=\frac{1516658000\times 10058333^{84}}{10000000\times 10058333^{84}-10000000^{85}}\)
- step6: Divide the numbers:
\(P=\frac{1516658000\times 10058333^{84}}{10000000\times 10058333^{84}-10000000^{85}}\)
Solve the equation \( 26000 = P * (1 - (1 + 0.0175)^{-28}) / 0.0175 \).
Solve the equation by following steps:
- step0: Solve for \(P\):
\(26000=\frac{P\left(1-\left(1+0.0175\right)^{-28}\right)}{0.0175}\)
- step1: Simplify:
\(26000=\frac{\left(400\times 407^{28}-400^{29}\right)P}{7\times 407^{28}}\)
- step2: Swap the sides:
\(\frac{\left(400\times 407^{28}-400^{29}\right)P}{7\times 407^{28}}=26000\)
- step3: Cross multiply:
\(\left(400\times 407^{28}-400^{29}\right)P=7\times 407^{28}\times 26000\)
- step4: Simplify the equation:
\(\left(400\times 407^{28}-400^{29}\right)P=182000\times 407^{28}\)
- step5: Divide both sides:
\(\frac{\left(400\times 407^{28}-400^{29}\right)P}{400\times 407^{28}-400^{29}}=\frac{182000\times 407^{28}}{400\times 407^{28}-400^{29}}\)
- step6: Divide the numbers:
\(P=\frac{182000\times 407^{28}}{400\times 407^{28}-400^{29}}\)
Solve the equation \( 26000 = P * (1 - (1 + 0.035)^{-14}) / 0.035 \).
Solve the equation by following steps:
- step0: Solve for \(P\):
\(26000=\frac{P\left(1-\left(1+0.035\right)^{-14}\right)}{0.035}\)
- step1: Simplify:
\(26000=\frac{\left(200\times 207^{14}-200^{15}\right)P}{7\times 207^{14}}\)
- step2: Swap the sides:
\(\frac{\left(200\times 207^{14}-200^{15}\right)P}{7\times 207^{14}}=26000\)
- step3: Cross multiply:
\(\left(200\times 207^{14}-200^{15}\right)P=7\times 207^{14}\times 26000\)
- step4: Simplify the equation:
\(\left(200\times 207^{14}-200^{15}\right)P=182000\times 207^{14}\)
- step5: Divide both sides:
\(\frac{\left(200\times 207^{14}-200^{15}\right)P}{200\times 207^{14}-200^{15}}=\frac{182000\times 207^{14}}{200\times 207^{14}-200^{15}}\)
- step6: Divide the numbers:
\(P=\frac{182000\times 207^{14}}{200\times 207^{14}-200^{15}}\)
Calculate or simplify the expression \( 26000 * (0.035 / (1 - (1 + 0.035)^{-14})) \).
Calculate the value by following steps:
- step0: Calculate:
\(26000\left(\frac{0.035}{\left(1-\left(1+0.035\right)^{-14}\right)}\right)\)
- step1: Remove the parentheses:
\(26000\left(\frac{0.035}{1-\left(1+0.035\right)^{-14}}\right)\)
- step2: Add the numbers:
\(26000\left(\frac{0.035}{1-1.035^{-14}}\right)\)
- step3: Convert the expressions:
\(26000\left(\frac{0.035}{1-\left(\frac{207}{200}\right)^{-14}}\right)\)
- step4: Subtract the numbers:
\(26000\left(\frac{0.035}{\frac{207^{14}-200^{14}}{207^{14}}}\right)\)
- step5: Divide the terms:
\(26000\times \frac{7\times 207^{14}}{200\times 207^{14}-200^{15}}\)
- step6: Multiply:
\(\frac{26000\times 7\times 207^{14}}{200\times 207^{14}-200^{15}}\)
- step7: Multiply:
\(\frac{182000\times 207^{14}}{200\times 207^{14}-200^{15}}\)
Calculate or simplify the expression \( 26000 * (0.0175 / (1 - (1 + 0.0175)^{-28})) \).
Calculate the value by following steps:
- step0: Calculate:
\(26000\left(\frac{0.0175}{\left(1-\left(1+0.0175\right)^{-28}\right)}\right)\)
- step1: Remove the parentheses:
\(26000\left(\frac{0.0175}{1-\left(1+0.0175\right)^{-28}}\right)\)
- step2: Add the numbers:
\(26000\left(\frac{0.0175}{1-1.0175^{-28}}\right)\)
- step3: Convert the expressions:
\(26000\left(\frac{0.0175}{1-\left(\frac{407}{400}\right)^{-28}}\right)\)
- step4: Subtract the numbers:
\(26000\left(\frac{0.0175}{\frac{407^{28}-400^{28}}{407^{28}}}\right)\)
- step5: Divide the terms:
\(26000\times \frac{7\times 407^{28}}{400\times 407^{28}-400^{29}}\)
- step6: Multiply:
\(\frac{26000\times 7\times 407^{28}}{400\times 407^{28}-400^{29}}\)
- step7: Multiply:
\(\frac{182000\times 407^{28}}{400\times 407^{28}-400^{29}}\)
Calculate or simplify the expression \( 26000 * (0.0058333 / (1 - (1 + 0.0058333)^{-84})) \).
Calculate the value by following steps:
- step0: Calculate:
\(26000\left(\frac{0.0058333}{\left(1-\left(1+0.0058333\right)^{-84}\right)}\right)\)
- step1: Remove the parentheses:
\(26000\left(\frac{0.0058333}{1-\left(1+0.0058333\right)^{-84}}\right)\)
- step2: Add the numbers:
\(26000\left(\frac{0.0058333}{1-1.0058333^{-84}}\right)\)
- step3: Convert the expressions:
\(26000\left(\frac{0.0058333}{1-\left(\frac{10058333}{10000000}\right)^{-84}}\right)\)
- step4: Subtract the numbers:
\(26000\left(\frac{0.0058333}{\frac{10058333^{84}-10000000^{84}}{10058333^{84}}}\right)\)
- step5: Divide the terms:
\(26000\times \frac{58333\times 10058333^{84}}{10000000\times 10058333^{84}-10000000^{85}}\)
- step6: Multiply:
\(\frac{26000\times 58333\times 10058333^{84}}{10000000\times 10058333^{84}-10000000^{85}}\)
- step7: Multiply:
\(\frac{1516658000\times 10058333^{84}}{10000000\times 10058333^{84}-10000000^{85}}\)
Now that we have calculated the payments for the different payment plans, here are the results:
1. **Semiannual Payments**:
- Payment: \( P \approx 2380.84 \)
2. **Quarterly Payments**:
- Payment: \( P \approx 1182.52 \)
3. **Monthly Payments**:
- Payment: \( P \approx 392.41 \)
### Summary of Payments:
- **Annual Payments**: \( \$ 4824.83 \)
- **Semiannual Payments**: \( \$ 2380.84 \)
- **Quarterly Payments**: \( \$ 1182.52 \)
- **Monthly Payments**: \( \$ 392.41 \)
All amounts are rounded to the nearest cent.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution