Question
upstudy study bank question image url

13. A body of mass 42 kg increases its speed from \( 15 \mathrm{~m} / \mathrm{s} \) to \( 43 \mathrm{~m} / \mathrm{s} \) in 12 seconds. Find the force acting c the body. (A) 52 N (B) 98 N (C) 150 N (D) 203 N 14. Find the minimum value of \( =x^{2}+6 x-12 \). (A) -12 (B) -6 (C) -3 (D) -21 15. Given that \( y=2 x-1 \) and \( \Delta x=0.1 \), find \( \Delta y \). (A) 0.20 (B) 0.15 (C) 0.10 (D) 0.05 16. An exponential sequence (G.P.) is given by \( \frac{9}{2}, \frac{3}{4}, \frac{1}{8}, \ldots \ldots \). Find its sum to infinity. (A) \( 13 \frac{1}{2} \) (B) \( 4 \frac{1}{5} \) (C) \( € \) (D) \( 5 \frac{2}{5} \) 17. If \( r=i+2 j \) and \( =-I+3 j \), find \( |2 n-r| \). (A) 8.5 (B) 5.0 (C) 4.0 (D) 3.6 18. Find the area of a circle whose equation is \( { }^{2}+y^{2}-4 \cdot x+8 y+11=0 \). (A) \( 3 \pi \) (B) \( 9 \pi \) (C) \( \epsilon \) 19. Find the fourth term in the binomial expansion of \( (3 x-y)^{6} \). (A) \( -540 x^{3} y^{3} \) (B) \( -27 x^{3} \) (D) \( 12 \pi \) (C) \( 540 x^{4} y^{2} \) (D) \( -540 x^{4} y^{2} \) 20. Given that \( f(x)=x^{2}+3 x+1 \), find the value of \( x \) at the turning point. (A) 2 (B) \( 1 \frac{1}{2}(C \) (C) \( -1 \frac{1}{2} \) 21. In how many ways can 12 people be seated on a bench if only 5 spaces are available? (A) 950 2 (B) 11880 (C) 792 (D) 495 22. If \( K x^{2}-12 x+K=0 \) has equal roots, find the values of \( K \). \( (A)+2(B)+3 \) \( (C)+.6 \) (D) +9

Ask by Joseph Harrington. in Nigeria
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Simplified Answers:** 13. **Force on the body:** 98 N 14. **Minimum value of \( f(x) \):** -21 15. **\( \Delta y \):** 0.20 16. **Sum to infinity of the G.P.:** 5 1⁄5 17. **Magnitude \( |2\mathbf{s} - \mathbf{r}| \):** 5.0 18. **Area of the circle:** 9π 19. **Fourth term in the binomial expansion:** -540x³y³ 20. **Value of \( x \) at the turning point:** -1 1⁄2 21. **Number of ways to seat 12 people on a bench:** 95,040 22. **Values of \( K \):** 6 and -6 (None of the options are correct)

Solution

Sure, let's go through each of the questions you've provided and identify the correct answers along with brief explanations. --- ### **Question 13** **A body of mass 42 kg increases its speed from \( 15 \mathrm{~m/s} \) to \( 43 \mathrm{~m/s} \) in 12 seconds. Find the force acting on the body.** **Options:** - (A) 52 N - (B) 98 N - (C) 150 N - (D) 203 N **Solution:** - **Acceleration (a)** = \( \frac{\Delta v}{\Delta t} = \frac{43 - 15}{12} = \frac{28}{12} = \frac{7}{3} \approx 2.333 \, \mathrm{m/s^2} \) - **Force (F)** = mass (m) × acceleration (a) = \( 42 \times \frac{7}{3} = 42 \times 2.333 \approx 98 \, \mathrm{N} \) **Answer:** **(B) 98 N** --- ### **Question 14** **Find the minimum value of \( f(x) = x^{2} + 6x - 12 \).** **Options:** - (A) -12 - (B) -6 - (C) -3 - (D) -21 **Solution:** - The function is a quadratic equation of the form \( ax^2 + bx + c \). - The vertex (minimum point) occurs at \( x = -\frac{b}{2a} = -\frac{6}{2 \times 1} = -3 \). - Minimum value \( f(-3) = (-3)^2 + 6(-3) - 12 = 9 - 18 - 12 = -21 \). **Answer:** **(D) -21** --- ### **Question 15** **Given that \( y = 2x - 1 \) and \( \Delta x = 0.1 \), find \( \Delta y \).** **Options:** - (A) 0.20 - (B) 0.15 - (C) 0.10 - (D) 0.05 **Solution:** - \( \Delta y = 2 \times \Delta x = 2 \times 0.1 = 0.2 \) **Answer:** **(A) 0.20** --- ### **Question 16** **An exponential sequence (G.P.) is given by \( \frac{9}{2}, \frac{3}{4}, \frac{1}{8}, \ldots \). Find its sum to infinity.** **Options:** - (A) \( 13 \frac{1}{2} \) - (B) \( 4 \frac{1}{5} \) - (C) \( € \) - (D) \( 5 \frac{2}{5} \) **Solution:** - **First term (a)** = \( \frac{9}{2} \) - **Common ratio (r)** = \( \frac{3/4}{9/2} = \frac{3}{4} \times \frac{2}{9} = \frac{1}{6} \) - **Sum to infinity (S)** = \( \frac{a}{1 - r} = \frac{9/2}{1 - 1/6} = \frac{9/2}{5/6} = \frac{9 \times 6}{2 \times 5} = \frac{54}{10} = 5.4 = 5 \frac{2}{5} \) **Answer:** **(D) \( 5 \frac{2}{5} \)** --- ### **Question 17** **If \( \mathbf{r} = \mathbf{i} + 2\mathbf{j} \) and \( \mathbf{s} = -\mathbf{i} + 3\mathbf{j} \), find \( |2\mathbf{s} - \mathbf{r}| \).** **Options:** - (A) 8.5 - (B) 5.0 - (C) 4.0 - (D) 3.6 **Solution:** - Calculate \( 2\mathbf{s} - \mathbf{r} \): \[ 2(-\mathbf{i} + 3\mathbf{j}) - (\mathbf{i} + 2\mathbf{j}) = -2\mathbf{i} + 6\mathbf{j} - \mathbf{i} - 2\mathbf{j} = -3\mathbf{i} + 4\mathbf{j} \] - Magnitude: \[ \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.0 \] **Answer:** **(B) 5.0** --- ### **Question 18** **Find the area of a circle whose equation is \( x^{2} + y^{2} - 4x + 8y + 11 = 0 \).** **Options:** - (A) \( 3\pi \) - (B) \( 9\pi \) - (C) \( \epsilon \) - (D) Not listed correctly **Solution:** - Rewrite the equation in standard form by completing the squares: \[ x^2 - 4x + y^2 + 8y = -11 \] \[ (x^2 - 4x + 4) + (y^2 + 8y + 16) = -11 + 4 + 16 \] \[ (x - 2)^2 + (y + 4)^2 = 9 \] - **Radius (r)** = √9 = 3 - **Area** = \( \pi r^2 = \pi \times 9 = 9\pi \) **Answer:** **(B) \( 9\pi \)** --- ### **Question 19** **Find the fourth term in the binomial expansion of \( (3x - y)^{6} \).** **Options:** - (A) \( -540x^{3}y^{3} \) - (B) \( -27x^{3} \) - (C) \( 540x^{4}y^{2} \) - (D) \( -540x^{4}y^{2} \) **Solution:** - The general term for the binomial expansion is: \[ T_{k+1} = C(6, k) \times (3x)^{6-k} \times (-y)^k \] - For the fourth term, \( k = 3 \): \[ T_4 = C(6, 3) \times (3x)^3 \times (-y)^3 = 20 \times 27x^3 \times (-y)^3 = 20 \times 27 \times (-1) x^3 y^3 = -540x^3y^3 \] **Answer:** **(A) \( -540x^{3}y^{3} \)** --- ### **Question 20** **Given that \( f(x) = x^{2} + 3x + 1 \), find the value of \( x \) at the turning point.** **Options:** - (A) 2 - (B) \( 1\frac{1}{2} \) - (C) \( -1\frac{1}{2} \) - (D) Not listed correctly **Solution:** - The x-coordinate of the turning point for a quadratic \( ax^2 + bx + c \) is \( -\frac{b}{2a} \): \[ x = -\frac{3}{2 \times 1} = -\frac{3}{2} = -1.5 \] **Answer:** **(C) \( -1\frac{1}{2} \)** --- ### **Question 21** **In how many ways can 12 people be seated on a bench if only 5 spaces are available?** **Options:** - (A) 95,040 - (B) 11,880 - (C) 792 - (D) 495 **Solution:** - This is a permutation problem where we select and arrange 5 people out of 12: \[ P(12,5) = 12 \times 11 \times 10 \times 9 \times 8 = 95,040 \] **Answer:** **(A) 95,040** --- ### **Question 22** **If \( Kx^{2} - 12x + K = 0 \) has equal roots, find the values of \( K \).** **Options:** - (A) +2 - (B) +3 - (C) +0.6 - (D) +9 **Solution:** - For the quadratic equation \( Kx^2 - 12x + K = 0 \) to have equal roots, the discriminant must be zero: \[ D = b^2 - 4ac = (-12)^2 - 4 \times K \times K = 144 - 4K^2 = 0 \] \[ 4K^2 = 144 \Rightarrow K^2 = 36 \Rightarrow K = \pm6 \] - The possible values of \( K \) are **6** and **-6**. - **Note:** None of the provided options match the correct values. **Answer:** **The values of \( K \) are \( 6 \) and \( -6 \). None of the provided options are correct.** --- If you have any further questions or need more detailed explanations for any of the problems, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the force acting on the body in question 13, we can apply Newton's second law, which states \( F = m \cdot a \). First, calculate the acceleration \( a \) by using the formula \( a = \frac{\Delta v}{\Delta t} = \frac{43 - 15}{12} = \frac{28}{12} \approx 2.33 \mathrm{~m/s}^2 \). Then, multiply by the mass of the body: \( F = 42 \cdot 2.33 \approx 98 N \). Hence, the answer is (B) 98 N. For question 14 regarding the quadratic function \( f(x) = x^{2} + 6x - 12 \), we can find the minimum value by using the vertex formula \( x = -\frac{b}{2a} \). Substituting the values gives \( x = -\frac{6}{2} = -3 \). Plugging \( -3 \) back into the function gives us \( f(-3) = (-3)^{2} + 6(-3) - 12 = 9 - 18 - 12 = -21 \). So, the minimum value is (D) -21.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy