5. \( \sqrt{\left(\frac{4}{9}+\frac{1}{2} \cdot \frac{7}{6}\right)+\frac{11}{9}}: \frac{6}{5}=x: \sqrt{\left(\frac{2}{5}+\frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Let’s break down the given equation step by step! First, we simplify the expressions on both sides of the equation. On the left side, we have: \[ \frac{4}{9} + \frac{1}{2} \cdot \frac{7}{6} \] Calculating \( \frac{1}{2} \cdot \frac{7}{6} = \frac{7}{12} \). Now find a common denominator for \( \frac{4}{9} \) and \( \frac{7}{12} \), which is 36: \[ \frac{4}{9} = \frac{16}{36}, \quad \frac{7}{12} = \frac{21}{36} \] Adding them gives: \[ \frac{16}{36} + \frac{21}{36} = \frac{37}{36} \] Now add \( \frac{11}{9} \): Convert \( \frac{11}{9} \) to have a denominator of 36: \[ \frac{11}{9} = \frac{44}{36} \] So now we have \( \frac{37}{36} + \frac{44}{36} = \frac{81}{36} \). Now we can take the square root: \[ \sqrt{\frac{81}{36}} = \frac{9}{6} = \frac{3}{2} \] Now, we have: \[ \frac{3}{2} : \frac{6}{5} = x : \sqrt{\left(\frac{2}{5} + \frac{4}{3} \cdot \frac{3}{10}\right) \cdot \frac{1}{5}} \] Compute the right side: Calculating \( \frac{4}{3} \cdot \frac{3}{10} = \frac{4}{10} = \frac{2}{5} \): \[ \frac{2}{5} + \frac{2}{5} = \frac{4}{5} \] Now multiply by \( \frac{1}{5} \): \[ \left(\frac{4}{5}\right) \cdot \left(\frac{1}{5}\right) = \frac{4}{25} \] So we take the square root: \[ \sqrt{\frac{4}{25}} = \frac{2}{5} \] Now we have: \[ \frac{3}{2} : \frac{6}{5} = x : \frac{2}{5} \] Converting into fractions gives: \[ \frac{\frac{3}{2}}{\frac{6}{5}} = \frac{3}{2} \cdot \frac{5}{6} = \frac{15}{12} = \frac{5}{4} \] So now equate and solve for \( x \): \[ \frac{5}{4} = \frac{x}{\frac{2}{5}} \implies x = \frac{5}{4} \cdot \frac{2}{5} = \frac{2}{4} = \frac{1}{2} \] Thus, the final answer is: \[ \boxed{\frac{1}{2}} \]