\begin{tabular}{l} A. Aply the laws of exponents to simplify the given exponential expressions. Show your comp \\ Highlight the final answer. \( \left(4 x y^{2}\right) \cdot\left(7 x^{3} y^{4}\right) \) \\ b. \( \left(-3 a^{4} b^{5}\right)^{4} \) \\ c. \( \left(-\frac{1}{2}\right)^{2} \cdot\left(-\frac{1}{2}\right)^{4} \) \\ d. \( \frac{48 m^{12} n^{9}}{4 m^{9} n} \) \\ \hline\end{tabular}
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To simplify these expressions, we can apply the laws of exponents systematically. 1. **For \( \left(4 x y^{2}\right) \cdot\left(7 x^{3} y^{4}\right) \)**: Combine the coefficients (4 and 7), and then add the exponents of like bases: \[ 4 \cdot 7 \cdot x^{1+3} \cdot y^{2+4} = 28 x^{4} y^{6} \] **Final Answer: \( 28 x^{4} y^{6} \)** 2. **For \( \left(-3 a^{4} b^{5}\right)^{4} \)**: Raise the coefficient and apply the power of a power rule to the variables: \[ (-3)^{4} a^{4 \cdot 4} b^{5 \cdot 4} = 81 a^{16} b^{20} \] **Final Answer: \( 81 a^{16} b^{20} \)** 3. **For \( \left(-\frac{1}{2}\right)^{2} \cdot\left(-\frac{1}{2}\right)^{4} \)**: Add the exponents since the bases are the same: \[ \left(-\frac{1}{2}\right)^{2+4} = \left(-\frac{1}{2}\right)^{6} = -\frac{1}{64} \] **Final Answer: \( -\frac{1}{64} \)** 4. **For \( \frac{48 m^{12} n^{9}}{4 m^{9} n} \)**: Divide the coefficients and subtract the exponents of like bases: \[ \frac{48}{4} \cdot m^{12-9} \cdot n^{9-1} = 12 m^{3} n^{8} \] **Final Answer: \( 12 m^{3} n^{8} \)**