Question
upstudy study bank question image url

4. Considere la transformación lineal definida como: \[ T\binom{x}{y}=\binom{4 x-5 y}{2 x-3 y} \] a) Determinar la matriz que representa a la transformación en la base canónica. b) Hallar el polinomio característico. c) Hallar los valores y vectores propios.

Ask by Weaver Norris. in Colombia
Dec 11,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

a) La matriz que representa la transformación en la base canónica es \( A = \begin{pmatrix} 6 & -5 \\ 2 & -1 \end{pmatrix} \). b) El polinomio característico es \( p(\lambda) = \lambda^2 - 5\lambda + 4 \). c) Los valores propios son \(\lambda_1 = 1\) y \(\lambda_2 = 4\). Los vectores propios son \( v_1 = \binom{1}{1} \) y \( v_2 = \binom{5}{2} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

Para determinar la matriz que representa la transformación lineal \( T \), primero observamos cómo actúa \( T \) en un vector genérico \( \binom{x}{y} \). Identificamos las imágenes de los vectores \( \binom{1}{0} \) y \( \binom{0}{1} \): - \( T \binom{1}{0} = \binom{4(1)-5(0)}{2(1)-3(0)} = \binom{4}{2} \) - \( T \binom{0}{1} = \binom{4(0)-5(1)}{2(0)-3(1)} = \binom{-5}{-3} \) Por lo tanto, la matriz que representa a la transformación en la base canónica es: \[ A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}. \] Para hallar el polinomio característico, calculamos \( \det(A - \lambda I) \): \[ \det\left(\begin{pmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{pmatrix}\right) = (4 - \lambda)(-3 - \lambda) - (-5)(2) = \lambda^2 - \lambda - 2. \] El polinomio característico es: \[ p(\lambda) = \lambda^2 - \lambda - 2. \] Ahora buscamos los valores propios resolviendo \( p(\lambda) = 0 \): \[ \lambda^2 - \lambda - 2 = 0 \implies (\lambda - 2)(\lambda + 1) = 0. \] Así, los valores propios son \( \lambda_1 = 2 \) y \( \lambda_2 = -1 \). Para los vectores propios: 1. Para \( \lambda_1 = 2 \): \[ (A - 2I) \binom{x}{y} = 0 \implies \begin{pmatrix} 2 & -5 \\ 2 & -5 \end{pmatrix} \binom{x}{y} = 0 \implies -5y + 2x = 0 \implies y = \frac{2}{5}x. \] Un vector propio es \( \binom{5}{2} \). 2. Para \( \lambda_2 = -1 \): \[ (A + I) \binom{x}{y} = 0 \implies \begin{pmatrix} 5 & -5 \\ 2 & -2 \end{pmatrix} \binom{x}{y} = 0 \implies -5y + 5x = 0 \implies x = y. \] Un vector propio es \( \binom{1}{1} \). Por lo tanto, los valores propios son \( 2 \) y \( -1 \) con vectores propios \( \binom{5}{2} \) y \( \binom{1}{1} \) respectivamente.

Related Questions

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy