Given the points \( A(-3,2), B(7,13), C(2,4), D(5,4), E(\sqrt{5}, \sqrt{5}) \), and \( F(4 \sqrt{5},-3 \sqrt{5}) \), find the position vector equal to the following vectors. \( \begin{array}{lll}\text { a. } \overrightarrow{A B} & \text { b. } \overrightarrow{A C} & \text { c. } \overrightarrow{E F} \\ \text { d. } \overrightarrow{C D}\end{array} \) a. \( \overrightarrow{A B}=\langle\square, \square \) (Type exact answers, using radicals as needed.)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the position vectors given the points, we need to perform vector subtraction for each pair of points. **a.** For \(\overrightarrow{A B}\): \[ \overrightarrow{A B} = B - A = (7 - (-3), 13 - 2) = (7 + 3, 13 - 2) = (10, 11). \] So, \(\overrightarrow{A B} = \langle 10, 11 \rangle\). **b.** For \(\overrightarrow{A C}\): \[ \overrightarrow{A C} = C - A = (2 - (-3), 4 - 2) = (2 + 3, 4 - 2) = (5, 2). \] So, \(\overrightarrow{A C} = \langle 5, 2 \rangle\). **c.** For \(\overrightarrow{E F}\): \[ \overrightarrow{E F} = F - E = (4 \sqrt{5} - \sqrt{5}, -3 \sqrt{5} - \sqrt{5}) = (4\sqrt{5} - \sqrt{5}, -3\sqrt{5} - \sqrt{5}) = (3\sqrt{5}, -4\sqrt{5}). \] So, \(\overrightarrow{E F} = \langle 3\sqrt{5}, -4\sqrt{5} \rangle\). **d.** For \(\overrightarrow{C D}\): \[ \overrightarrow{C D} = D - C = (5 - 2, 4 - 4) = (3, 0). \] So, \(\overrightarrow{C D} = \langle 3, 0 \rangle\). In summary: a. \(\overrightarrow{A B} = \langle 10, 11 \rangle\) b. \(\overrightarrow{A C} = \langle 5, 2 \rangle\) c. \(\overrightarrow{E F} = \langle 3\sqrt{5}, -4\sqrt{5} \rangle\) d. \(\overrightarrow{C D} = \langle 3, 0 \rangle\)