Question
upstudy study bank question image url

Given the points \( A(-3,2), B(7,13), C(2,4), D(5,4), E(\sqrt{5}, \sqrt{5}) \), and \( F(4 \sqrt{5},-3 \sqrt{5}) \), find the position vector equal to the following vectors. \( \begin{array}{lll}\text { a. } \overrightarrow{A B} & \text { b. } \overrightarrow{A C} & \text { c. } \overrightarrow{E F} \\ \text { d. } \overrightarrow{C D}\end{array} \) a. \( \overrightarrow{A B}=\langle\square, \square \) (Type exact answers, using radicals as needed.)

Ask by Barber May. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a. \( \overrightarrow{AB} = \langle 10, 11 \rangle \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To find the position vectors given the points, we need to perform vector subtraction for each pair of points. **a.** For \(\overrightarrow{A B}\): \[ \overrightarrow{A B} = B - A = (7 - (-3), 13 - 2) = (7 + 3, 13 - 2) = (10, 11). \] So, \(\overrightarrow{A B} = \langle 10, 11 \rangle\). **b.** For \(\overrightarrow{A C}\): \[ \overrightarrow{A C} = C - A = (2 - (-3), 4 - 2) = (2 + 3, 4 - 2) = (5, 2). \] So, \(\overrightarrow{A C} = \langle 5, 2 \rangle\). **c.** For \(\overrightarrow{E F}\): \[ \overrightarrow{E F} = F - E = (4 \sqrt{5} - \sqrt{5}, -3 \sqrt{5} - \sqrt{5}) = (4\sqrt{5} - \sqrt{5}, -3\sqrt{5} - \sqrt{5}) = (3\sqrt{5}, -4\sqrt{5}). \] So, \(\overrightarrow{E F} = \langle 3\sqrt{5}, -4\sqrt{5} \rangle\). **d.** For \(\overrightarrow{C D}\): \[ \overrightarrow{C D} = D - C = (5 - 2, 4 - 4) = (3, 0). \] So, \(\overrightarrow{C D} = \langle 3, 0 \rangle\). In summary: a. \(\overrightarrow{A B} = \langle 10, 11 \rangle\) b. \(\overrightarrow{A C} = \langle 5, 2 \rangle\) c. \(\overrightarrow{E F} = \langle 3\sqrt{5}, -4\sqrt{5} \rangle\) d. \(\overrightarrow{C D} = \langle 3, 0 \rangle\)

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy