3. \( \frac{(3 x y z)^{4} x^{5} y^{2}}{9 x^{2} y^{2} z} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To simplify \( \frac{(3 x y z)^{4} x^{5} y^{2}}{9 x^{2} y^{2} z} \), let's first break it down. The numerator can be expanded: \((3 x y z)^{4} = 3^{4} x^{4} y^{4} z^{4} = 81 x^{4} y^{4} z^{4}\). Now, rewriting the entire expression gives us: \(\frac{81 x^{4} y^{4} z^{4} x^{5} y^{2}}{9 x^{2} y^{2} z} = \frac{81 x^{9} y^{6} z^{4}}{9 x^{2} y^{2} z}\). Next, we can simplify by canceling out \(9\) from \(81\) and simplifying powers of \(x\), \(y\), and \(z\): \(\frac{81}{9} = 9\) and \(x^{9}/x^{2} = x^{7}\), \(y^{6}/y^{2} = y^{4}\), \(z^{4}/z = z^{3}\). Putting it all together, we have: \(9 x^{7} y^{4} z^{3}\). Thus, the simplified expression is \(9 x^{7} y^{4} z^{3}\).