Question
Parte 1: Encuentra el valor indicado para cada caso 1. Para la función \( f(x)=\left\{\begin{array}{cc}3-2 x, & x<-1 \\ x^{2}, \quad x \geq-1\end{array}\right. \) determina \( \begin{array}{ll}\text { a) } f(-4) & \text { b) } f(3)\end{array} \)
Ask by Savage Wilson. in Mexico
Jan 22,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
a) \( f(-4) = 11 \)
b) \( f(3) = 9 \)
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like
Mind Expander
Para calcular \( f(-4) \), vemos que -4 es menor que -1, por lo que usamos la primera parte de la función: \( f(-4) = 3 - 2(-4) = 3 + 8 = 11 \). Ahora, para \( f(3) \), que es mayor o igual a -1, aplicamos la segunda parte: \( f(3) = 3^2 = 9 \). Por lo tanto, \( f(-4) = 11 \) y \( f(3) = 9 \).