Find the exact value of \( \cos ^{2}\left(\frac{1}{2} \cos ^{-1} \frac{3}{5}\right) \) \( \cos ^{2}\left(\frac{1}{2} \cos ^{-1} \frac{3}{5}\right)=\square \) (Type an exact answer, using radicals as needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find the exact value of \( \cos^{2}\left(\frac{1}{2} \cos^{-1} \frac{3}{5}\right) \), we can use the half-angle identity for cosine: \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} \] In this case, let \( \theta = \cos^{-1} \frac{3}{5} \). From this, we know that: \[ \cos(\theta) = \frac{3}{5} \] Now apply the half-angle identity: \[ \cos\left(\frac{1}{2} \theta\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{5}{5} + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{8}{5}}{2}} = \sqrt{\frac{8}{10}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] Now, since we need \( \cos^{2}\left(\frac{1}{2} \theta\right) \): \[ \cos^{2}\left(\frac{1}{2} \theta\right) = \left( \frac{2}{\sqrt{5}} \right)^{2} = \frac{4}{5} \] Thus, the exact value is: \[ \cos^{2}\left(\frac{1}{2} \cos^{-1} \frac{3}{5}\right) = \frac{4}{5} \] Therefore, the answer is \[ \boxed{\frac{4}{5}} \]