Answer
**Problem (b):**
\[ x = \frac{\ln(28)}{2 (\ln(43) - \ln(3))} \]
**Problem (d):**
All real numbers \( x \) satisfy the equation.
Solution
Let's solve each of the given exponential equations step by step.
---
### Problem (b)
**Equation:**
\[ 9^{x} + 3^{2x + 3} = 43^{2x} \]
**Step 1: Express all terms with the same base if possible.**
- Notice that \( 9 = 3^2 \), so \( 9^x = (3^2)^x = 3^{2x} \).
- Similarly, \( 3^{2x + 3} = 3^{2x} \cdot 3^3 = 3^{2x} \cdot 27 \).
**Step 2: Substitute these expressions back into the equation.**
\[ 3^{2x} + 27 \cdot 3^{2x} = 43^{2x} \]
\[ (1 + 27) \cdot 3^{2x} = 43^{2x} \]
\[ 28 \cdot 3^{2x} = 43^{2x} \]
**Step 3: Take the natural logarithm of both sides to solve for \( x \).**
\[ \ln(28 \cdot 3^{2x}) = \ln(43^{2x}) \]
\[ \ln(28) + \ln(3^{2x}) = \ln(43^{2x}) \]
\[ \ln(28) + 2x \ln(3) = 2x \ln(43) \]
**Step 4: Isolate \( x \).**
\[ 2x \ln(43) - 2x \ln(3) = \ln(28) \]
\[ 2x (\ln(43) - \ln(3)) = \ln(28) \]
\[ x = \frac{\ln(28)}{2 (\ln(43) - \ln(3))} \]
**Final Answer for (b):**
\[ x = \frac{\ln(28)}{2 (\ln(43) - \ln(3))} \]
---
### Problem (d)
**Equation:**
\[ 2^{x + 3} - 2^{x + 2} = 2^{x + 2} \]
**Step 1: Simplify each term.**
- \( 2^{x + 3} = 2^3 \cdot 2^x = 8 \cdot 2^x \)
- \( 2^{x + 2} = 2^2 \cdot 2^x = 4 \cdot 2^x \)
**Step 2: Substitute these back into the equation.**
\[ 8 \cdot 2^x - 4 \cdot 2^x = 4 \cdot 2^x \]
\[ (8 - 4) \cdot 2^x = 4 \cdot 2^x \]
\[ 4 \cdot 2^x = 4 \cdot 2^x \]
**Step 3: Analyze the equation.**
The equation simplifies to an identity:
\[ 4 \cdot 2^x = 4 \cdot 2^x \]
This is true for **all real numbers** \( x \).
**Final Answer for (d):**
All real numbers \( x \) satisfy the equation.
---
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution