Question
upstudy study bank question image url

Derivar la siguiente expresión: 1) \( y=\sqrt[3]{3 x^{2}}-\frac{1}{\sqrt{5 x}} \)

Ask by Parsons Rose. in Venezuela
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de la función \( y = \sqrt[3]{3x^{2}} - \frac{1}{\sqrt{5x}} \) es: \[ y' = \frac{2x}{\sqrt[3]{9x^{4}}} + \frac{5}{2 \sqrt{125x^{3}}} \] O simplificada: \[ y' = \frac{2}{3^{\frac{2}{3}} x^{\frac{1}{3}}} + \frac{1}{2 \cdot 5^{\frac{1}{2}} x^{\frac{3}{2}}} \]

Solution

Para derivar la función dada: \[ y = \sqrt[3]{3x^{2}} - \frac{1}{\sqrt{5x}} \] seguiremos los siguientes pasos: ### Paso 1: Reescribir la función utilizando exponentes fraccionarios \[ y = (3x^{2})^{\frac{1}{3}} - (5x)^{-\frac{1}{2}} \] ### Paso 2: Aplicar las reglas de derivación Recordemos que la derivada de \( u^n \) respecto a \( x \) es \( n \cdot u^{n-1} \cdot u' \). 1. **Para el primer término** \((3x^{2})^{\frac{1}{3}}\): - Exponente: \( \frac{1}{3} \) - Derivada del interior \( u = 3x^2 \) es \( u' = 6x \) Aplicando la regla: \[ \frac{d}{dx} \left( (3x^{2})^{\frac{1}{3}} \right) = \frac{1}{3} \cdot (3x^{2})^{\frac{1}{3} - 1} \cdot 6x = \frac{6x}{3} \cdot (3x^{2})^{-\frac{2}{3}} = 2x \cdot (3x^{2})^{-\frac{2}{3}} \] 2. **Para el segundo término** \( - (5x)^{-\frac{1}{2}} \): - Exponente: \( -\frac{1}{2} \) - Derivada del interior \( u = 5x \) es \( u' = 5 \) Aplicando la regla: \[ \frac{d}{dx} \left( - (5x)^{-\frac{1}{2}} \right) = - \left( -\frac{1}{2} \right) \cdot (5x)^{-\frac{1}{2} - 1} \cdot 5 = \frac{5}{2} \cdot (5x)^{-\frac{3}{2}} \] ### Paso 3: Simplificar la expresión derivada \[ y' = 2x \cdot (3x^{2})^{-\frac{2}{3}} + \frac{5}{2} \cdot (5x)^{-\frac{3}{2}} \] Podemos reescribir las potencias negativas como raíces: \[ y' = \frac{2x}{\sqrt[3]{(3x^{2})^2}} + \frac{5}{2 \cdot \sqrt{(5x)^3}} \] Simplificando aún más: \[ y' = \frac{2x}{\sqrt[3]{9x^{4}}} + \frac{5}{2 \cdot \sqrt{125x^{3}}} \] Finalmente, expresando las raíces de manera más clara: \[ y' = \frac{2x}{3^{\frac{2}{3}} x^{\frac{4}{3}}} + \frac{5}{2 \cdot 5^{\frac{3}{2}} x^{\frac{3}{2}}} \] ### Respuesta Final La derivada de la función es: \[ y' = \frac{2x}{\sqrt[3]{9x^{4}}} + \frac{5}{2 \sqrt{125x^{3}}} \] O, simplificada: \[ y' = \frac{2}{3^{\frac{2}{3}} x^{\frac{1}{3}}} + \frac{1}{2 \cdot 5^{\frac{1}{2}} x^{\frac{3}{2}}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Para derivar la expresión \( y=\sqrt[3]{3 x^{2}}-\frac{1}{\sqrt{5 x}} \), comenzamos aplicando la regla de la potencia y la regla de la cadena. La derivada de \( \sqrt[3]{3 x^2} \) se obtiene al multiplicar por el exponente y restar uno: \( \frac{2 \cdot 3}{3} x^{\frac{2}{3}-1} = 2 x^{-\frac{1}{3}} \). Para derivar \( -\frac{1}{\sqrt{5 x}} \), reescribimos como \( -\frac{1}{(5 x)^{1/2}} \) y aplicamos la regla de la cadena y la regla de la potencia: \( -\frac{1}{2} (5 x)^{-1/2} \cdot 5 = -\frac{5}{2(5x)^{3/2}} \). Por lo tanto, la derivada completa es \( y' = 2 x^{-\frac{1}{3}} + \frac{5}{4(5 x)^{3/2}} \).

Related Questions

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy