Question
upstudy study bank question image url

Score on last try: 0 of 10 pts. See Details for more. \( \rightarrow \) Next question \( \longleftrightarrow \) Get a similar question You can retry this question below Evaluate the limit: \( \lim _{s \rightarrow 5} \frac{s^{3}-125}{s-5}=\square \) Question Help: Video \( \square \) Message instructor Submit Question Jump to Answer

Ask by Hill Deleon. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The limit is 75.

Solution

Calculate the limit \( \lim_{s\rightarrow 5} \frac{s^{3}-125}{s-5} \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{s\rightarrow 5}\left(\frac{s^{3}-125}{s-5}\right)\) - step1: Reduce the fraction: \(\lim _{s\rightarrow 5}\left(s^{2}+5s+25\right)\) - step2: Rewrite the expression: \(\lim _{s\rightarrow 5}\left(s^{2}\right)+\lim _{s\rightarrow 5}\left(5s\right)+\lim _{s\rightarrow 5}\left(25\right)\) - step3: Calculate: \(25+25+25\) - step4: Calculate: \(75\) The limit of \( \frac{s^{3}-125}{s-5} \) as \( s \) approaches 5 is 75.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the limit as \( s \) approaches 5 for the expression \( \frac{s^{3}-125}{s-5} \), we need to recognize that \( s^{3} - 125 \) can be factored using the difference of cubes formula, which states \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \). Here, \( s^3 - 5^3 \) can be factored as \( (s - 5)(s^2 + 5s + 25) \). So, we can rewrite the limit as: \[ \lim_{s \rightarrow 5} \frac{(s - 5)(s^2 + 5s + 25)}{s - 5} \] Cancelling \( (s - 5) \) gives us: \[ \lim_{s \rightarrow 5} (s^2 + 5s + 25) \] Substituting \( s = 5 \): \[ 5^2 + 5 \cdot 5 + 25 = 25 + 25 + 25 = 75 \] Thus, the limit is \( 75 \).

Related Questions

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy