Question
upstudy study bank question image url

3.(4 boda) Prelaskom na polarne koordinate izračunajte \( \int_{S}(x y-2 x) d S \) po lijevoj polovini krugax \( x^{2}+y^{2} \leq 4 \).

Ask by Mejia Boyd. in Croatia
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Integral je jednak \(\frac{32}{3}\).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

Da bismo izračunali integral \( \int_{S}(x y-2 x) d S \) po lijevoj polovini kruga \( x^{2}+y^{2} \leq 4 \), prvo ćemo napraviti promjenu koordinata u polarnu formu. U polarnim koordinatama imamo \( x = r \cos(\theta) \) i \( y = r \sin(\theta) \), gdje je \( r \) radijus i \( \theta \) kut. Za lijevu polovinu kruga, \( r \) varira od 0 do 2 (budući da je radijus kruga 2), a \( \theta \) varira od \( \frac{\pi}{2} \) do \( \frac{3\pi}{2} \). Takođe, element površine u polarnoj koordinati je \( dS = r \, dr \, d\theta \). Uvrstimo \( x \) i \( y \) u funkciju integranda: \( xy - 2x = (r \cos(\theta))(r \sin(\theta)) - 2(r \cos(\theta)) = r^2 \cos(\theta) \sin(\theta) - 2r \cos(\theta) \). Dakle, integral postaje: \[ \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_{0}^{2} \left( r^2 \cos(\theta) \sin(\theta) - 2r \cos(\theta) \right) r \, dr \, d\theta. \] Raširimo integrand: \[ = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_{0}^{2} \left( r^3 \cos(\theta) \sin(\theta) - 2r^2 \cos(\theta) \right) dr \, d\theta. \] Prvo izračunavamo unutarnji integral: \[ \int_{0}^{2} r^3 \, dr = \left[\frac{r^4}{4}\right]_{0}^{2} = \frac{16}{4} = 4, \] i \[ \int_{0}^{2} r^2 \, dr = \left[\frac{r^3}{3}\right]_{0}^{2} = \frac{8}{3}. \] Sada možemo napisati integral: \[ = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left( 4 \cos(\theta) \sin(\theta) - \frac{16}{3} \cos(\theta) \right) d\theta. \] Kombinovanjem izraza dobijamo: \[ = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left( 4 \cos(\theta) \sin(\theta) - \frac{16}{3} \cos(\theta) \right) d\theta. \] S obzirom na simetriju, integral \( \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos(\theta) \, d\theta \) je nula, pa samo uvažavamo prvi termin: \[ = 4 \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos(\theta) \sin(\theta) \, d\theta. \] Ovaj integral se može riješiti korištenjem identiteta: \[ \cos(\theta) \sin(\theta) = \frac{1}{2}\sin(2\theta), \] tako da dobijemo: \[ = 4 \cdot \frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin(2\theta) \, d\theta. \] Izračunajmo integral: \[ = 2 \left[-\frac{1}{2} \cos(2\theta)\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = 2 \left[-\frac{1}{2}(\cos(3\pi) - \cos(\pi))\right] = 2 \left[-\frac{1}{2}(-1 - (-1))\right] = 0. \] Dakle, konačni rezultat integrala je \( 0 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy