3.(4 boda) Prelaskom na polarne koordinate izračunajte \( \int_{S}(x y-2 x) d S \) po lijevoj polovini krugax \( x^{2}+y^{2} \leq 4 \).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Da bismo izračunali integral \( \int_{S}(x y-2 x) d S \) po lijevoj polovini kruga \( x^{2}+y^{2} \leq 4 \), prvo ćemo napraviti promjenu koordinata u polarnu formu. U polarnim koordinatama imamo \( x = r \cos(\theta) \) i \( y = r \sin(\theta) \), gdje je \( r \) radijus i \( \theta \) kut. Za lijevu polovinu kruga, \( r \) varira od 0 do 2 (budući da je radijus kruga 2), a \( \theta \) varira od \( \frac{\pi}{2} \) do \( \frac{3\pi}{2} \). Takođe, element površine u polarnoj koordinati je \( dS = r \, dr \, d\theta \). Uvrstimo \( x \) i \( y \) u funkciju integranda: \( xy - 2x = (r \cos(\theta))(r \sin(\theta)) - 2(r \cos(\theta)) = r^2 \cos(\theta) \sin(\theta) - 2r \cos(\theta) \). Dakle, integral postaje: \[ \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_{0}^{2} \left( r^2 \cos(\theta) \sin(\theta) - 2r \cos(\theta) \right) r \, dr \, d\theta. \] Raširimo integrand: \[ = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_{0}^{2} \left( r^3 \cos(\theta) \sin(\theta) - 2r^2 \cos(\theta) \right) dr \, d\theta. \] Prvo izračunavamo unutarnji integral: \[ \int_{0}^{2} r^3 \, dr = \left[\frac{r^4}{4}\right]_{0}^{2} = \frac{16}{4} = 4, \] i \[ \int_{0}^{2} r^2 \, dr = \left[\frac{r^3}{3}\right]_{0}^{2} = \frac{8}{3}. \] Sada možemo napisati integral: \[ = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left( 4 \cos(\theta) \sin(\theta) - \frac{16}{3} \cos(\theta) \right) d\theta. \] Kombinovanjem izraza dobijamo: \[ = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left( 4 \cos(\theta) \sin(\theta) - \frac{16}{3} \cos(\theta) \right) d\theta. \] S obzirom na simetriju, integral \( \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos(\theta) \, d\theta \) je nula, pa samo uvažavamo prvi termin: \[ = 4 \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos(\theta) \sin(\theta) \, d\theta. \] Ovaj integral se može riješiti korištenjem identiteta: \[ \cos(\theta) \sin(\theta) = \frac{1}{2}\sin(2\theta), \] tako da dobijemo: \[ = 4 \cdot \frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin(2\theta) \, d\theta. \] Izračunajmo integral: \[ = 2 \left[-\frac{1}{2} \cos(2\theta)\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = 2 \left[-\frac{1}{2}(\cos(3\pi) - \cos(\pi))\right] = 2 \left[-\frac{1}{2}(-1 - (-1))\right] = 0. \] Dakle, konačni rezultat integrala je \( 0 \).