Question
upstudy study bank question image url

Vereenvoudig die volgende uitdrukkings: \begin{tabular}{|l|l|}\hline 1.1 & \( 5.5^{x-1} \cdot\left(25^{1-x}\right)^{0} \) \\ \hline\( =5\left(1.1^{x-1} \cdot\left(5^{1-x}\right)^{0}\right) \) \\ \hline 1.2 & \( \frac{3^{-2} \cdot 2^{5} \cdot 5^{-1} \cdot 3^{2}}{2^{3} \cdot 5^{-2}} \) \\ \hline\end{tabular}

Ask by Rowe Malone. in South Africa
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1.1: \( \frac{11^{x-1}}{2^{x-1}} \) 1.2: \( 20 \)

Solution

Calculate or simplify the expression \( 5.5^{x-1} * (25^{1-x})^{0} \). Simplify the expression by following steps: - step0: Solution: \(5.5^{x-1}\left(25^{1-x}\right)^{0}\) - step1: Convert the expressions: \(\left(\frac{11}{2}\right)^{x-1}\left(25^{1-x}\right)^{0}\) - step2: Evaluate the power: \(\left(\frac{11}{2}\right)^{x-1}\times 1\) - step3: Multiply: \(\left(\frac{11}{2}\right)^{x-1}\) - step4: Expand the expression: \(\frac{11^{x-1}}{2^{x-1}}\) Calculate or simplify the expression \( 5 * (1.1^{x-1} * (5^{1-x})^{0}) \). Simplify the expression by following steps: - step0: Solution: \(5\left(1.1^{x-1}\left(5^{1-x}\right)^{0}\right)\) - step1: Remove the parentheses: \(5\times 1.1^{x-1}\left(5^{1-x}\right)^{0}\) - step2: Convert the expressions: \(5\left(\frac{11}{10}\right)^{x-1}\left(5^{1-x}\right)^{0}\) - step3: Evaluate the power: \(5\left(\frac{11}{10}\right)^{x-1}\times 1\) - step4: Multiply the terms: \(5\left(\frac{11}{10}\right)^{x-1}\) - step5: Expand the expression: \(5\times \frac{11^{x-1}}{10^{x-1}}\) - step6: Rewrite the expression: \(5\times \frac{11^{x-1}}{5\times 2\times 10^{x-2}}\) - step7: Reduce the fraction: \(1\times \frac{11^{x-1}}{2\times 10^{x-2}}\) - step8: Multiply the terms: \(\frac{11^{x-1}}{2\times 10^{x-2}}\) Calculate or simplify the expression \( (3^{-2} * 2^{5} * 5^{-1} * 3^{2}) / (2^{3} * 5^{-2}) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(3^{-2}\times 2^{5}\times 5^{-1}\times 3^{2}\right)}{\left(2^{3}\times 5^{-2}\right)}\) - step1: Remove the parentheses: \(\frac{3^{-2}\times 2^{5}\times 5^{-1}\times 3^{2}}{2^{3}\times 5^{-2}}\) - step2: Multiply by \(a^{-n}:\) \(3^{-2}\times 2^{5}\times 5^{-1}\times 3^{2}\times 2^{-3}\times 5^{2}\) - step3: Multiply the terms: \(3^{-2+2}\times 2^{5}\times 5^{-1}\times 2^{-3}\times 5^{2}\) - step4: Add the numbers: \(3^{0}\times 2^{5}\times 5^{-1}\times 2^{-3}\times 5^{2}\) - step5: Evaluate the power: \(2^{5}\times 5^{-1}\times 2^{-3}\times 5^{2}\) - step6: Multiply the terms: \(2^{5-3}\times 5^{-1}\times 5^{2}\) - step7: Subtract the numbers: \(2^{2}\times 5^{-1}\times 5^{2}\) - step8: Multiply the terms: \(2^{2}\times 5^{-1+2}\) - step9: Add the numbers: \(2^{2}\times 5\) - step10: Evaluate the power: \(4\times 5\) - step11: Multiply: \(20\) Die vereenvoudigde uitdrukkings zijn: 1.1: \( \frac{11^{x-1}}{2^{x-1}} \) 1.2: \( 20 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Laat ons die uitdrukkings stap vir stap vereenvoudig. 1.1: Die uitdrukking \( 5.5^{x-1} \cdot\left(25^{1-x}\right)^{0} \) kan vereenvoudig word. Omdat enige getal tot die mag van nul gelyk is aan 1, het ons: \[ = 5 \cdot 5^{x-1} \cdot 1 = 5^{1 + (x-1)} = 5^{x} \] Dus, die vereenvoudigde vorm is \( 5^{x} \). 1.2: Kom ons neem die uitdrukking \( \frac{3^{-2} \cdot 2^{5} \cdot 5^{-1} \cdot 3^{2}}{2^{3} \cdot 5^{-2}} \). Eerstens kan ons die teraard in die teller en noemer saamvoeg. Trouens, \( 3^{-2} \cdot 3^{2} = 3^{0} = 1 \). Die gewere in die teller dan word: \[ \frac{1 \cdot 2^{5} \cdot 5^{-1}}{2^{3} \cdot 5^{-2}} = \frac{2^{5} \cdot 5^{-1}}{2^{3} \cdot 5^{-2}} \] Nou kan ons die basis met dieselfde eksponente deel: \[ = \frac{2^{5}}{2^{3}} \cdot \frac{5^{-1}}{5^{-2}} = 2^{5-3} \cdot 5^{-1 - (-2)} = 2^{2} \cdot 5^{1} = 4 \cdot 5 = 20 \] Die vereenvoudigde vorm vir hierdie uirdrukking is dus \( 20 \).

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy