\( 1 \leftarrow \quad \) Evaluate the expression using the order of operations. \[ \frac{2(-2)+\frac{6}{(-3)}+\frac{-(-12)}{(-\sqrt{9})}}{\sqrt{36}-1} \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let's evaluate the expression step by step using the order of operations. The expression is: \[ \frac{2(-2)+\frac{6}{(-3)}+\frac{-(-12)}{(-\sqrt{9})}}{\sqrt{36}-1} \] **Step 1: Evaluate the denominator.** \[ \sqrt{36} = 6 \] So, \[ \sqrt{36} - 1 = 6 - 1 = 5 \] **Step 2: Evaluate the numerator.** Starting from the numerator: \[ 2(-2) + \frac{6}{(-3)} + \frac{-(-12)}{(-\sqrt{9})} \] - Evaluate \(2(-2)\): \[ 2(-2) = -4 \] - Evaluate \(\frac{6}{(-3)}\): \[ \frac{6}{(-3)} = -2 \] - Evaluate \(\sqrt{9}\): \[ \sqrt{9} = 3 \quad \text{so} \quad -\sqrt{9} = -3 \] - Evaluate \(\frac{-(-12)}{-3}\): \[ \frac{-(-12)}{-3} = \frac{12}{-3} = -4 \] Now, combine these results in the numerator: \[ -4 + (-2) + (-4) \] This simplifies to: \[ -4 - 2 - 4 = -10 \] **Step 3: Combine the numerator and denominator.** Now substitute back into the original expression: \[ \frac{-10}{5} = -2 \] The final evaluated value of the expression is: \[ \boxed{-2} \]