Answer
The integral evaluates to:
\[
\frac{4}{5}x^{5/4} - x + \frac{4}{3}x^{3/4} - 2x^{1/2} + 4x^{1/4} - 4\ln(1 + x^{1/4}) + C
\]
where \( C \) is the constant of integration.
Solution
To evaluate the integral:
\[
\int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} \, dx
\]
we can use a substitution method to simplify the expression.
### Step 1: Substitution
Let:
\[
t = \sqrt[4]{x} \quad \text{which means} \quad x = t^4
\]
Then, differentiate both sides with respect to \( t \):
\[
dx = 4t^3 \, dt
\]
Also, note that:
\[
\sqrt{x} = x^{1/2} = (t^4)^{1/2} = t^2
\]
### Step 2: Rewrite the Integral in Terms of \( t \)
Substituting \( x = t^4 \) and \( dx = 4t^3 \, dt \):
\[
\int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} \, dx = \int \frac{t^2}{1 + t} \cdot 4t^3 \, dt = 4 \int \frac{t^5}{1 + t} \, dt
\]
### Step 3: Simplify the Integrand
We can perform polynomial division on \( \frac{t^5}{1 + t} \):
\[
\frac{t^5}{1 + t} = t^4 - t^3 + t^2 - t + 1 - \frac{1}{1 + t}
\]
Thus, the integral becomes:
\[
4 \int \left(t^4 - t^3 + t^2 - t + 1 - \frac{1}{1 + t}\right) \, dt
\]
### Step 4: Integrate Term-by-Term
Integrate each term separately:
\[
4 \left( \frac{t^5}{5} - \frac{t^4}{4} + \frac{t^3}{3} - \frac{t^2}{2} + t - \ln|1 + t| \right) + C
\]
### Step 5: Substitute Back in Terms of \( x \)
Recall that \( t = \sqrt[4]{x} \), so:
\[
t^5 = x^{5/4}, \quad t^4 = x, \quad t^3 = x^{3/4}, \quad t^2 = x^{1/2}, \quad t = x^{1/4}
\]
Substituting back:
\[
4 \left( \frac{x^{5/4}}{5} - \frac{x}{4} + \frac{x^{3/4}}{3} - \frac{x^{1/2}}{2} + x^{1/4} - \ln(1 + x^{1/4}) \right) + C
\]
### Final Answer
Combining the constants, the final expression is:
\[
\int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} \, dx = \frac{4}{5}x^{5/4} - x + \frac{4}{3}x^{3/4} - 2x^{1/2} + 4x^{1/4} - 4\ln\left(1 + x^{1/4}\right) + C
\]
where \( C \) is the constant of integration.
**Answer Summary:**
After substitution, an antiderivative is (4⁄5)x^(5⁄4) – x + (4/3)x^(3/4) – 2 x^(1/2) + 4x^(1/4) minus four log terms. Thus,
∫√x/(1 + x^(1/4)) dx = (4/5)x^(5/4) − x + (4/3)x^(3/4) − 2x^(1/2) + 4x^(1/4) − 4 ln(1 + x^(1/4)) + C
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution