Question
upstudy study bank question image url

\( A B C \) est un triangle tel que : \( A B=8 \mathrm{~cm}, A C=6 \mathrm{~cm} \) et \( B C=10 \mathrm{~cm} \) 6) Construire le triangle ABC. 7 Montrer que \( A B C \) est un triangle rectangle en \( A \). 8) Calculer \( \operatorname{Cos}(\overline{A C B}) \). 9) Calculer \( \operatorname{Sin} \) (ACB). 10) Calculer \( \operatorname{Tan}(\overline{A C B}) \). Exercice 4: \( E F G \) est un triangle rectangle en E tel que: \( \mathrm{EF}=5 \sqrt{3}, \mathrm{EG}=2 \sqrt{7} \). 2) Calculer FG.

Ask by Lambert Cummings. in Morocco
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \mathrm{FG} = \sqrt{103} \) cm

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Pour construire le triangle \( ABC \), commence par tracer le segment \( BC \) de 10 cm. Ensuite, avec un compas, trace un arc de cercle de 6 cm autour du point \( B \) et un autre arc de 8 cm autour du point \( C \). L'intersection de ces deux arcs te donnera le point \( A \). Relie alors les points \( A, B \) et \( C \) pour former ton triangle. Pour montrer que le triangle \( ABC \) est rectangle en \( A \), tu peux utiliser le théorème de Pythagore. En vérifiant si \( AB^2 + AC^2 = BC^2 \) : \( 8^2 + 6^2 = 64 + 36 = 100 \) qui est égal à \( 10^2 = 100 \). Ainsi, \( ABC \) est bien un triangle rectangle en \( A \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy