Question
upstudy study bank question image url

Write each of the following series in sigma notation: \( \begin{array}{ll}\text { (a) } 2+4+6+8+10+12 & \text { (b) } 1+8+27+64+125 \\ \text { (c) } \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{128} & \text { (d) } 3-6+12-24+\ldots . \text { to } n \text { terms } \\ \text { (e) } \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\ldots+\frac{24}{25} & \text { (f) } 5+5+5+5+5+\ldots . \text { to } n \text { terms }\end{array} \)

Ask by Vaughn Guerrero. in South Africa
Jan 09,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the series expressed in sigma notation: **(a)** \( \sum_{n=1}^{6} 2n \) **(b)** \( \sum_{n=1}^{5} n^{3} \) **(c)** \( \sum_{n=1}^{7} \left(\frac{1}{2}\right)^n \) **(d)** \( \sum_{k=1}^{n} 3 \cdot (-2)^{k-1} \) **(e)** \( \sum_{n=1}^{24} \frac{n}{n+1} \) **(f)** \( \sum_{k=1}^{n} 5 \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

For part (a), the series \( 2 + 4 + 6 + 8 + 10 + 12 \) can be expressed in sigma notation as \( \sum_{k=1}^{6} 2k \). For part (b), the series \( 1 + 8 + 27 + 64 + 125 \) is made up of cubes, and can be written in sigma notation as \( \sum_{k=1}^{5} k^3 \). For part (c), the series \( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{128} \) can be represented as \( \sum_{k=1}^{7} \frac{1}{2^k} \), as there are 7 terms, starting from \( \frac{1}{2^1} \). For part (d), the alternating series \( 3 - 6 + 12 - 24 + \ldots \) can be represented in sigma notation as \( \sum_{k=1}^{n} 3 \cdot (-2)^{k-1} \). For part (e), the series \( \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \ldots + \frac{24}{25} \) can be expressed as \( \sum_{k=1}^{24} \frac{k}{k+1} \). For part (f), the series \( 5 + 5 + 5 + 5 + 5 + \ldots \) to \( n \) terms can be succinctly written in sigma notation as \( \sum_{k=1}^{n} 5 \).

Related Questions

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy