Simplify the expression shown below. \[ (3+\sqrt{-1})-(7+\sqrt{-25}) \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To simplify the expression \((3+\sqrt{-1})-(7+\sqrt{-25})\), we first need to simplify \(\sqrt{-25}\). Recall that \(\sqrt{-1} = i\) (the imaginary unit), so we can express \(\sqrt{-25}\) as: \[ \sqrt{-25} = \sqrt{25} \cdot \sqrt{-1} = 5i \] Now, we can substitute \(\sqrt{-25}\) in the original expression: \[ (3+\sqrt{-1}) - (7+5i) \] This can be rewritten as: \[ (3 + i) - (7 + 5i) \] Now, we distribute the negative sign: \[ 3 + i - 7 - 5i \] Next, we combine the real and imaginary parts: \[ (3 - 7) + (i - 5i) = -4 - 4i \] Thus, the simplified expression is: \[ \boxed{-4 - 4i} \]