Question
\( y=2(9)^{x} \) for \( x=-2,0 \), and \( \frac{1}{2} \)
Ask by Erickson Dickson. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
When \( x = -2 \), \( y = \frac{2}{81} \) (approximately 0.0247). When \( x = 0 \), \( y = 2 \). When \( x = \frac{1}{2} \), \( y = 6 \).
Solution
Sure! Let's evaluate the function \( y = 2 \times 9^{x} \) for the given values of \( x \):
\[ y = 2 \times 9^{x} \]
### 1. When \( x = -2 \):
\[
\begin{align*}
y &= 2 \times 9^{-2} \\
&= 2 \times \left(\frac{1}{9}\right)^{2} \\
&= 2 \times \frac{1}{81} \\
&= \frac{2}{81} \\
&\approx 0.0247
\end{align*}
\]
### 2. When \( x = 0 \):
\[
\begin{align*}
y &= 2 \times 9^{0} \\
&= 2 \times 1 \quad \text{(since any number raised to the power of 0 is 1)} \\
&= 2
\end{align*}
\]
### 3. When \( x = \frac{1}{2} \):
\[
\begin{align*}
y &= 2 \times 9^{\frac{1}{2}} \\
&= 2 \times \sqrt{9} \\
&= 2 \times 3 \\
&= 6
\end{align*}
\]
### Summary of Results:
| \( x \) | \( y = 2 \times 9^{x} \) | Approximate Value |
|---------------|---------------------------|--------------------|
| \( -2 \) | \( \frac{2}{81} \) | \( \approx 0.0247 \) |
| \( 0 \) | \( 2 \) | \( 2 \) |
| \( \frac{1}{2} \) | \( 6 \) | \( 6 \) |
If you need any further assistance or additional evaluations, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To find the values of \( y \) for \( x = -2, 0, \) and \( \frac{1}{2} \): 1. For \( x = -2 \): \[ y = 2(9)^{-2} = 2 \left(\frac{1}{9^2}\right) = 2 \left(\frac{1}{81}\right) = \frac{2}{81} \] 2. For \( x = 0 \): \[ y = 2(9)^{0} = 2(1) = 2 \] 3. For \( x = \frac{1}{2} \): \[ y = 2(9)^{\frac{1}{2}} = 2 \sqrt{9} = 2 \cdot 3 = 6 \] So, the values of \( y \) at \( x = -2, 0, \) and \( \frac{1}{2} \) are \( \frac{2}{81}, 2, \) and \( 6 \) respectively. Enjoy these values—you’ve just unlocked a little numerical treasure!