Answer
a) Perpendicular
b) Parallel
c) Neither
d) Perpendicular
Solution
To determine whether each pair of lines is **parallel**, **perpendicular**, or **neither**, we'll analyze their slopes.
- **Parallel Lines** have identical slopes.
- **Perpendicular Lines** have slopes that are negative reciprocals of each other (i.e., \( m_1 \times m_2 = -1 \)).
- If neither condition is met, the lines are **neither** parallel nor perpendicular.
Let's examine each pair:
---
### **a) \( y = 3x + 2 \) and \( y = -\frac{1}{3}x + 4 \)**
1. **Identify the slopes:**
- **First line:** \( y = 3x + 2 \) has a slope \( m_1 = 3 \).
- **Second line:** \( y = -\frac{1}{3}x + 4 \) has a slope \( m_2 = -\frac{1}{3} \).
2. **Check for Parallelism:**
- \( m_1 \neq m_2 \) \( \Rightarrow \) Not parallel.
3. **Check for Perpendicularity:**
- \( m_1 \times m_2 = 3 \times \left(-\frac{1}{3}\right) = -1 \).
- \( m_1 \times m_2 = -1 \) \( \Rightarrow \) Perpendicular.
**Answer:** **Perpendicular**
---
### **b) \( y = \frac{1}{2}x - 1 \) and \( 2y - x = 2 \)**
1. **Rearrange the second equation to slope-intercept form \( y = mx + b \):**
- \( 2y = x + 2 \)
- \( y = \frac{1}{2}x + 1 \)
2. **Identify the slopes:**
- **First line:** \( y = \frac{1}{2}x - 1 \) has a slope \( m_1 = \frac{1}{2} \).
- **Second line:** \( y = \frac{1}{2}x + 1 \) has a slope \( m_2 = \frac{1}{2} \).
3. **Check for Parallelism:**
- \( m_1 = m_2 \) \( \Rightarrow \) Parallel.
4. **Check for Perpendicularity:**
- Not applicable since slopes are equal.
**Answer:** **Parallel**
---
### **c) \( 3y - x = 9 \) and \( y = 3x - 7 \)**
1. **Rearrange the first equation to slope-intercept form:**
- \( 3y = x + 9 \)
- \( y = \frac{1}{3}x + 3 \)
2. **Identify the slopes:**
- **First line:** \( y = \frac{1}{3}x + 3 \) has a slope \( m_1 = \frac{1}{3} \).
- **Second line:** \( y = 3x - 7 \) has a slope \( m_2 = 3 \).
3. **Check for Parallelism:**
- \( m_1 \neq m_2 \) \( \Rightarrow \) Not parallel.
4. **Check for Perpendicularity:**
- \( m_1 \times m_2 = \frac{1}{3} \times 3 = 1 \neq -1 \) \( \Rightarrow \) Not perpendicular.
**Answer:** **Neither**
---
### **d) \( 2y + 3x = 8 \) and \( 3y = 2x + 1 \)**
1. **Rearrange both equations to slope-intercept form:**
- **First equation:** \( 2y + 3x = 8 \)
- \( 2y = -3x + 8 \)
- \( y = -\frac{3}{2}x + 4 \)
- **Second equation:** \( 3y = 2x + 1 \)
- \( y = \frac{2}{3}x + \frac{1}{3} \)
2. **Identify the slopes:**
- **First line:** \( y = -\frac{3}{2}x + 4 \) has a slope \( m_1 = -\frac{3}{2} \).
- **Second line:** \( y = \frac{2}{3}x + \frac{1}{3} \) has a slope \( m_2 = \frac{2}{3} \).
3. **Check for Parallelism:**
- \( m_1 \neq m_2 \) \( \Rightarrow \) Not parallel.
4. **Check for Perpendicularity:**
- \( m_1 \times m_2 = -\frac{3}{2} \times \frac{2}{3} = -1 \).
- \( m_1 \times m_2 = -1 \) \( \Rightarrow \) Perpendicular.
**Answer:** **Perpendicular**
---
### **Summary of Results:**
- **a)** Perpendicular
- **b)** Parallel
- **c)** Neither
- **d)** Perpendicular
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution