Answer
The expanded form of the expression is:
\[
-3x^{\frac{3}{2}} - 6x^{\frac{5}{4}} - 3x
\]
Or, using radicals:
\[
-3x\sqrt{x} - 6x\sqrt[4]{x} - 3x
\]
Solution
It looks like you have the expression:
\[ -3x\left(x^{\frac{1}{4}} + 1\right)^{2} \]
Let's expand and simplify this expression step by step.
### Step 1: Expand the Squared Term
First, expand \(\left(x^{\frac{1}{4}} + 1\right)^{2}\) using the binomial expansion formula \((a + b)^2 = a^2 + 2ab + b^2\):
\[
\left(x^{\frac{1}{4}} + 1\right)^{2} = \left(x^{\frac{1}{4}}\right)^2 + 2\left(x^{\frac{1}{4}} \cdot 1\right) + 1^2 = x^{\frac{1}{2}} + 2x^{\frac{1}{4}} + 1
\]
### Step 2: Distribute \(-3x\) Across the Expanded Terms
Now, multiply \(-3x\) with each term inside the parentheses:
\[
-3x \cdot \left(x^{\frac{1}{2}} + 2x^{\frac{1}{4}} + 1\right) = -3x \cdot x^{\frac{1}{2}} - 3x \cdot 2x^{\frac{1}{4}} - 3x \cdot 1
\]
### Step 3: Simplify Each Term
1. **First Term:**
\[
-3x \cdot x^{\frac{1}{2}} = -3x^{1 + \frac{1}{2}} = -3x^{\frac{3}{2}}
\]
2. **Second Term:**
\[
-3x \cdot 2x^{\frac{1}{4}} = -6x^{1 + \frac{1}{4}} = -6x^{\frac{5}{4}}
\]
3. **Third Term:**
\[
-3x \cdot 1 = -3x
\]
### Step 4: Combine All Terms
Putting it all together:
\[
-3x\left(x^{\frac{1}{4}} + 1\right)^{2} = -3x^{\frac{3}{2}} - 6x^{\frac{5}{4}} - 3x
\]
### Final Expanded Form
\[
-3x^{\frac{3}{2}} - 6x^{\frac{5}{4}} - 3x
\]
If you prefer to write the exponents with radicals:
\[
-3x^{\frac{3}{2}} = -3x \sqrt{x}, \quad -6x^{\frac{5}{4}} = -6x \sqrt[4]{x}, \quad \text{and} \quad -3x \text{ remains the same}.
\]
So, another way to write the expanded expression is:
\[
-3x\sqrt{x} - 6x\sqrt[4]{x} - 3x
\]
Feel free to let me know if you need further assistance with this expression!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution