Question
upstudy study bank question image url

\( 2 x+2 y+z-7=0,2 x-y+3 z-3=0,4 x+5 y-2 z-12=0 \) tekisliklarning kesishish nuqtasi va \( M(0 ; 3 ; 0), N(1: 1 ; 1) \) nuqtalardan o'tuvchi tekislik tenglamasi topilsin.

Ask by Wright Horton. in Uzbekistan
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Kesishish nuqtasi \( (1, 2, 1) \). M va N nuqtalardan o'tuvchi tekislik tenglamasi \( x - z = 0 \).

Solution

Uchta tekislikning tenglamalari quyidagicha berilgan: \[ \begin{cases} 2x + 2y + z = 7 \quad \text{(1)} \\ 2x - y + 3z = 3 \quad \text{(2)} \\ 4x + 5y - 2z = 12 \quad \text{(3)} \end{cases} \] **Kesishish nuqtasini topish:** 1. **(1) va (2) tenglamalarni yechish:** \[ \begin{align*} (2x - y + 3z) - (2x + 2y + z) &= 3 - 7 \\ -3y + 2z &= -4 \quad \text{(4)} \end{align*} \] 2. **(3) tenglamani (1) tenglamaning ikki baravari bilan kamaytirish:** \[ \begin{align*} (4x + 5y - 2z) - 2(2x + 2y + z) &= 12 - 14 \\ y - 4z &= -2 \quad \text{(5)} \end{align*} \] 3. **(5) dan y ni ifodalash va (4) ga qo'yish:** \[ y = 4z - 2 \] \[ -3(4z - 2) + 2z = -4 \\ -12z + 6 + 2z = -4 \\ -10z = -10 \\ z = 1 \] \[ y = 4(1) - 2 = 2 \] 4. **(1) tenglamadan x ni topish:** \[ 2x + 2(2) + 1 = 7 \\ 2x + 5 = 7 \\ 2x = 2 \\ x = 1 \] Demak, uchta tekislikning kesishish nuqtasi \( (1, 2, 1) \) hisoblanadi. **Tekislik tenglamasini topish:** Berilgan nuqtalar: - \( M(0, 3, 0) \) - \( N(1, 1, 1) \) - Kesishish nuqtasi \( (1, 2, 1) \) 1. **Vektorlarni aniqlash:** \[ \vec{A} = M - (1, 2, 1) = (-1, 1, -1) \] \[ \vec{B} = N - (1, 2, 1) = (0, -1, 0) \] 2. **Normal vektorni topish (kross mahsuloti):** \[ \vec{n} = \vec{A} \times \vec{B} = (-1, 1, -1) \times (0, -1, 0) = (-1)\mathbf{i} + 0\mathbf{j} + 1\mathbf{k} = (-1, 0, 1) \] 3. **Tekislik tenglamasi:** \[ -1(x - 1) + 0(y - 2) + 1(z - 1) = 0 \\ -x + z = 0 \\ x - z = 0 \] Demak, \( M \) va \( N \) nuqtalardan o'tuvchi tekislik tenglamasi: \[ x - z = 0 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Avval berilgan tekisliklarning kesishish nuqtasini aniqlash uchun, ulardagi tenglamalarni birgalikda yechamiz: 1. \( 2x + 2y + z = 7 \) 2. \( 2x - y + 3z = 3 \) 3. \( 4x + 5y - 2z = 12 \) Bu tenglamalarni yechish uchun avval birinchi tenglamadan \( z \) ni ifodalab olamiz: \( z = 7 - 2x - 2y \). Keyin bu ifodani ikkinchi va uchinchi tenglamalarga qo'yib, \( x \) va \( y \) ni topamiz. Ikkinchi tenglamaga \( z \) ni qo'yamiz: \( 2x - y + 3(7 - 2x - 2y) = 3 \) Bu tenglamani yechamiz va oxirida \( x \) va \( y \) ni topib, \( z \) ni hisoblaymiz. Natijalarda x va y ning qiymatlari aniqlangach, berilgan tekisliklarning kesishish nuqtasini topamiz. Keyin, \( M(0; 3; 0) \) va \( N(1; 1; 1) \) nuqtalaridan o'tuvchi tekislik tenglamasini topish uchun nuqtalarning koordinatalarini tekislik tenglamasiga kiritamiz. Bu nuqtalardan o'tuvchi tekislik tenglamasi quyidagi ko‘rinishda bo‘ladi: \( A(x - x_1) + B(y - y_1) + C(z - z_1) = 0 \) Bu yerda \( (x_1, y_1, z_1) \) nuqta, \( A, B, C \) esa tekislikning normal vektori. Normal vektorini nuqtalardan topamiz va texnologiyaga mos ravishda hisoblaymiz.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy