\begin{tabular}{l} \#3.) Diagonalize the matrix A , by finding matrix D and matrix P , where \\ \( \qquad A=\left[\begin{array}{cc}4 & -3 \\ 2 & -1\end{array}\right] \) \\ \hline Note: We want to express A as \( A=P D P^{-1} \quad \), where \( D \) is a diagonal matrix. \end{tabular}
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To diagonalize the matrix \( A = \left[\begin{array}{cc}4 & -3 \\ 2 & -1\end{array}\right] \), first, we need to find the eigenvalues by solving the characteristic polynomial \( \text{det}(A - \lambda I) = 0 \). The characteristic polynomial is given by: \[ \text{det}\left(\begin{bmatrix} 4-\lambda & -3 \\ 2 & -1-\lambda \end{bmatrix}\right) = (4-\lambda)(-1-\lambda) - (-3)(2) = \lambda^2 - 3\lambda + 4 - 6 = \lambda^2 - 3\lambda + 2 = 0 \] Factoring the polynomial, we get: \[ (\lambda - 2)(\lambda - 1) = 0 \] So, the eigenvalues are \( \lambda_1 = 2 \) and \( \lambda_2 = 1 \). Next, we find the eigenvectors for each eigenvalue. For \( \lambda_1 = 2 \): \[ A - 2I = \left[\begin{array}{cc} 2 & -3 \\ 2 & -3 \end{array}\right] \] Setting up the system, we take the first row: \[ 2x - 3y = 0 \implies y = \frac{2}{3}x \] Choosing \( x = 3 \), we get the eigenvector \( v_1 = \left[\begin{array}{c} 3 \\ 2 \end{array}\right] \). For \( \lambda_2 = 1 \): \[ A - 1I = \left[\begin{array}{cc} 3 & -3 \\ 2 & -2 \end{array}\right] \] Setting up the system, we take the first row: \[ 3x - 3y = 0 \implies y = x \] Choosing \( x = 1 \), we get the eigenvector \( v_2 = \left[\begin{array}{c} 1 \\ 1 \end{array}\right] \). Now, we form the matrices \( P \) and \( D \): \[ P = \left[\begin{array}{cc} 3 & 1 \\ 2 & 1 \end{array}\right], \quad D = \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array}\right] \] Thus, we can express \( A \) as: \[ A = P D P^{-1} \] Where: \[ P^{-1} = \frac{1}{(3)(1) - (2)(1)} \left[\begin{array}{cc} 1 & -1 \\ -2 & 3 \end{array}\right] = \frac{1}{1} \left[\begin{array}{cc} 1 & -1 \\ -2 & 3 \end{array}\right] = \left[\begin{array}{cc} 1 & -1 \\ -2 & 3 \end{array}\right] \] Therefore, \( A = \left[\begin{array}{cc}3 & 1 \\ 2 & 1\end{array}\right] \left[\begin{array}{cc}2 & 0 \\ 0 & 1\end{array}\right] \left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right] \).