Question
upstudy study bank question image url

\( \frac { ( 1 - \operatorname { tag } ^ { 2 } \alpha ) \sin \alpha \cdot \sec ^ { 2 } \alpha } { ( \cos ^ { 2 } x - \sin ^ { 2 } x \alpha ) \operatorname { tag } x } \)

Ask by Wade Nunez. in Spain
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La expresión simplificada es: \[ \frac{(1 - \tan^{2} \alpha) \cdot \sin \alpha \cdot \sec^{2} \alpha}{(\cos^{2} x - \sin^{2} (x \alpha)) \cdot \tan x} \]

Solution

Parece que hay un error tipográfico en la expresión que proporcionaste. Es probable que `\operatorname{tag}` deba ser `\tan`, que representa la función tangente. Asumiendo esto, la expresión corregida sería: \[ \frac{(1 - \tan^{2} \alpha) \cdot \sin \alpha \cdot \sec^{2} \alpha}{(\cos^{2} x - \sin^{2} (x \alpha)) \cdot \tan x} \] A continuación, simplificamos la expresión paso a paso: 1. **Identidades trigonométricas útiles:** - \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha}\) - \(\sec \alpha = \frac{1}{\cos \alpha}\) - \(1 + \tan^{2} \alpha = \sec^{2} \alpha\) 2. **Simplificar el numerador:** \[ (1 - \tan^{2} \alpha) \cdot \sin \alpha \cdot \sec^{2} \alpha \] Usando la identidad \(1 + \tan^{2} \alpha = \sec^{2} \alpha\), podemos reescribir \(1 - \tan^{2} \alpha\) como: \[ 1 - \tan^{2} \alpha = \frac{1}{\sec^{2} \alpha} - \tan^{2} \alpha = \frac{1 - \sin^{2} \alpha}{\cos^{2} \alpha} = \frac{\cos^{2} \alpha}{\cos^{2} \alpha} = 1 - \tan^{2} \alpha \] Sin una identidad estándar que simplifique directamente \(1 - \tan^{2} \alpha\), dejamos el numerador como está: \[ (1 - \tan^{2} \alpha) \cdot \sin \alpha \cdot \sec^{2} \alpha \] 3. **Simplificar el denominador:** \[ (\cos^{2} x - \sin^{2} (x \alpha)) \cdot \tan x \] Utilizando la identidad de la diferencia de cuadrados: \[ \cos^{2} x - \sin^{2} (x \alpha) = \cos(2x) \quad \text{(si } \alpha = 1\text{)} \] Sin embargo, sin más información sobre \(\alpha\), dejamos el denominador como está: \[ (\cos^{2} x - \sin^{2} (x \alpha)) \cdot \tan x \] 4. **Expresión completa simplificada:** \[ \frac{(1 - \tan^{2} \alpha) \cdot \sin \alpha \cdot \sec^{2} \alpha}{(\cos^{2} x - \sin^{2} (x \alpha)) \cdot \tan x} \] Sin información adicional sobre los valores o relaciones entre \(x\) y \(\alpha\), la expresión no se puede simplificar más. Sin embargo, hemos corregido y reescrito la expresión asumiendo que `\operatorname{tag}` debía ser `\tan`. Si tienes más detalles o necesitas una simplificación específica, por favor proporciona información adicional.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that trigonometric identities can help simplify complex-looking expressions? For instance, using identities like \( \sec^2 \alpha = 1 + \tan^2 \alpha \) can often help break down complicated terms involving tangents and secants into more manageable forms. This not only eases your calculations but also enhances your understanding of the relationships between different functions! Another fun fact: the origins of trigonometry date back to ancient civilizations, including the Babylonians and Greeks, where they used it primarily in astronomy and land surveying. The development of these functions allowed mathematicians to calculate distances and angles—leading to advancements in map-making and navigation that laid the groundwork for modern science!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy