Question
upstudy study bank question image url

กาา \( a_{n}=\frac{4 n^{2}-2 n+3}{n(n+2)} \) แลัวลิลิตขของลำดับนี้งคค่าเท่ากับเท่าไร

Ask by Grant Hall. in Thailand
Jan 16,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

ลิมิตของลำดับ \( a_{n} = \frac{4n^{2} - 2n + 3}{n(n+2)} \) เมื่อ \( n \) เข้าใกล้อนันต์ คือ 4.

Solution

ในการหาลิมิตของลำดับ \( a_{n} = \frac{4n^{2} - 2n + 3}{n(n+2)} \) เมื่อ \( n \) เข้าใกล้อนันต์ ให้ทำดังนี้: \[ a_{n} = \frac{4n^{2} - 2n + 3}{n^{2} + 2n} = \frac{4 - \frac{2}{n} + \frac{3}{n^{2}}}{1 + \frac{2}{n}} \] เมื่อ \( n \) เข้าใกล้อนันต์ ส่วนที่มี \( \frac{1}{n} \) จะเข้าใกล้ศูนย์ ดังนั้นลิมิตของลำดับจะเป็น: \[ \lim_{n \to \infty} a_{n} = \frac{4 - 0 + 0}{1 + 0} = 4 \] **ดังนั้น ลิมิตของลำดับนี้เท่ากับ 4**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

เราจะเริ่มหาลิลลิตของลำดับ \( a_n = \frac{4n^2 - 2n + 3}{n(n+2)} \) โดยพิจารณาค่าของ \( a_n \) เมื่อ \( n \) เป็นค่าที่มีขอบเขตไม่จำกัด (เข้าใกล้อนันต์) เมื่อ \( n \to \infty \), สารประกอบหลักคือ \( 4n^2 \) ในตัวเศษและ \( n^2 \) ในตัวส่วน เราสามารถทำการแยกส่วนให้เป็นรูปที่ดูง่ายขึ้น โดยที่จะตัด \( n^2 \) ออกจากทั้งเศษและส่วน: \[ a_n = \frac{4n^2 - 2n + 3}{n(n+2)} = \frac{4 - \frac{2}{n} + \frac{3}{n^2}}{1 + \frac{2}{n}} \] เมื่อ \( n \to \infty \), \(\frac{2}{n} \to 0\) และ \(\frac{3}{n^2} \to 0\) เราจะได้ว่า: \[ \lim_{n \to \infty} a_n = \frac{4 - 0 + 0}{1 + 0} = 4 \] ดังนั้นค่าลิลิตของลำดับนี้คือ \( 4 \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy