Answer
The value of \( 25 \cos x - \frac{7}{\tan x} \) is 0.
Solution
Given:
\[
\sin x = \frac{7}{25} \quad \text{and} \quad 90^\circ < x < 270^\circ
\]
1. **Determine the Quadrant:**
- The interval \( 90^\circ < x < 270^\circ \) spans Quadrants II and III.
- Since \( \sin x = \frac{7}{25} \) is positive, \( x \) must be in Quadrant II.
2. **Find \( \cos x \):**
- Use the Pythagorean identity:
\[
\sin^2 x + \cos^2 x = 1 \implies \left(\frac{7}{25}\right)^2 + \cos^2 x = 1 \implies \cos^2 x = 1 - \frac{49}{625} = \frac{576}{625}
\]
- Since \( x \) is in Quadrant II, \( \cos x \) is negative:
\[
\cos x = -\frac{24}{25}
\]
3. **Find \( \tan x \):**
\[
\tan x = \frac{\sin x}{\cos x} = \frac{\frac{7}{25}}{-\frac{24}{25}} = -\frac{7}{24}
\]
4. **Compute the Expression \( 25 \cos x - \frac{7}{\tan x} \):**
\[
25 \cos x - \frac{7}{\tan x} = 25\left(-\frac{24}{25}\right) - \frac{7}{-\frac{7}{24}} = -24 + 24 = 0
\]
**Final Answer:**
\[
0
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution