Question
upstudy study bank question image url

stra, aplicando la relación para la su ue se cumple que: \( \operatorname{sen}\left(\frac{3 \pi}{2}+\alpha\right)=- \)

Ask by Hardy Ray. in Spain
Jan 12,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \sen\left(\frac{3\pi}{2} + \alpha\right) = -\cos \alpha \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

¡Claro! Para resolver la ecuación \( \operatorname{sen}\left(\frac{3 \pi}{2}+\alpha\right) \), podemos usar la identidad de la suma de ángulos. Sabemos que \( \operatorname{sen}(A + B) = \operatorname{sen}(A) \operatorname{cos}(B) + \operatorname{cos}(A) \operatorname{sen}(B) \). En este caso, \( A = \frac{3 \pi}{2} \) y \( B = \alpha \). La función seno de \( \frac{3 \pi}{2} \) es \( -1 \) y el coseno es \( 0 \), así que la expresión se simplifica a \( \operatorname{sen}\left(\frac{3\pi}{2} + \alpha\right) = -\operatorname{cos}(\alpha) \). Esto implica que \( -\operatorname{cos}(\alpha) = -1 \), lo que significa que \( \operatorname{cos}(\alpha) = 1 \) y, por lo tanto, \( \alpha = 2n\pi \) para cualquier número entero \( n \). ¡Listo para seguir con la diversión matemática!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy