Question
upstudy study bank question image url

3. \( |\sin x|=\sin x \cos x \)

Ask by Rodriquez Hodgson. in Russia
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Все решения уравнения \( |\sin x| = \sin x \cos x \) имеют вид \( x = n\pi \), где \( n \) — целое число.

Solution

Решим уравнение: \[ |\sin x| = \sin x \cos x \] **Шаг 1: Рассмотрим два случая в зависимости от знака \(\sin x\).** --- **Случай 1: \(\sin x \geq 0\)** Тогда модуль можно убрать без изменения знака: \[ \sin x = \sin x \cos x \] Переносим все слагаемые в одну сторону: \[ \sin x - \sin x \cos x = 0 \\ \sin x (1 - \cos x) = 0 \] Получаем два уравнения: 1. \(\sin x = 0\) Решения: \[ x = n\pi, \quad n \in \mathbb{Z} \] 2. \(\cos x = 1\) Решения: \[ x = 2n\pi, \quad n \in \mathbb{Z} \] Однако, поскольку мы рассматриваем случай \(\sin x \geq 0\), решения \(\cos x = 1\) уже включены в \(\sin x = 0\) при \(x = 2n\pi\). --- **Случай 2: \(\sin x < 0\)** Тогда модуль принимает противоположный знак: \[ -\sin x = \sin x \cos x \] Переносим все слагаемые в одну сторону: \[ -\sin x - \sin x \cos x = 0 \\ -\sin x (1 + \cos x) = 0 \] Получаем два уравнения: 1. \(\sin x = 0\) Решения: \[ x = n\pi, \quad n \in \mathbb{З} \] Но поскольку \(\sin x < 0\), допустимы только \(x = (2n+1)\pi\). 2. \(\cos x = -1\) Решения: \[ x = (2n+1)\pi, \quad n \in \mathbb{З} \] --- **Объединяя оба случая, получаем общее решение:** \[ x = n\pi, \quad n \in \mathbb{З} \] **Проверка:** Подставим \(x = n\pi\): \[ |\sin(n\pi)| = 0 \\ \sin(n\pi) \cos(n\pi) = 0 \cdot (\pm1) = 0 \] Уравнение выполняется для всех целых \(n\). **Ответ:** Все решения уравнения имеют вид \(x = n\pi\), где \(n\) — целое число.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equation \( |\sin x|=\sin x \cos x \), we start by considering the absolute value. This means that either \( \sin x \geq 0 \) or \( \sin x < 0 \). In the case where \( \sin x \geq 0 \), the equation simplifies to \( \sin x = \sin x \cos x \). Dividing both sides by \( \sin x \) (noting that \( \sin x \neq 0 \)), we get \( 1 = \cos x\). This yields the solutions \( x = 2n\pi \), where \( n \) is any integer. In the case where \( \sin x < 0 \), the equation becomes \( -\sin x = \sin x \cos x\). Rearranging gives \( \sin x(\cos x + 1) = 0\). Since \( \sin x < 0 \), we discard \( \sin x = 0 \) and explore \( \cos x + 1 = 0 \), leading to \( \cos x = -1 \), or \( x = (2n + 1)\pi \) for any integer \( n \). In summary, the solutions to the equation are: 1. \( x = 2n\pi \) (when \( \sin x \geq 0 \)), 2. \( x = (2n + 1)\pi \) (when \( \sin x < 0 \)).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy