Question
For each function below:
(1) Draw a neat sketch graph indicating the coordinates of the intercepts with the axes, the coordinates of the turning point and the

For each function below: (1) Draw a neat sketch graph indicating the coordinates of the intercepts with the axes, the coordinates of the turning point and the equation of the axis of symmetry. (2) Determine the domain and range. (3) Determine the values of x for which the graph increases and decreases. (4) Determine the maximum or minimum value of the graph. (a) f(x)=(x+1)^{2}-4 (b) f(x)=-(x+1)^{2}+4 (c) f(x)=(x-1)^{2}-4 (d) f(x)=-(x-1)^{2}+4 (e) f(x)=(x-2)^{2}-1 (f) g(x)=(x+1)^{2}+2 (g) g(x)=-(x+1)^{2}-2 (h) g(x)=(x-2)^{2}-9 (i) g(x)=2(x+1)^{2}-2 (j) g(x)=(x-4)^{2}-2

Ask by May Sandoval.
Mar 25,2025 02:56

Upstudy AI Solution

Tutor-Verified Answer

Answer

For each function, sketch the graph showing intercepts, turning point, and axis of symmetry. Determine the domain and range. Identify where the graph increases and decreases, and find the maximum or minimum value. Function (a): \( f(x) = (x+1)^2 - 4 \) - Vertex at \( x = -1 \), \( f(-1) = -4 \) - Axis of symmetry: \( x = -1 \) - Increases for \( x > -1 \), decreases for \( x < -1 \) - Minimum value: \( -4 \) Function (b): \( f(x) = -(x+1)^2 + 4 \) - Vertex at \( x = -1 \), \( f(-1) = 4 \) - Axis of symmetry: \( x = -1 \) - Decreases for \( x > -1 \), increases for \( x < -1 \) - Maximum value: \( 4 \) Function (c): \( f(x) = (x-1)^2 - 4 \) - Vertex at \( x = 1 \), \( f(1) = -4 \) - Axis of symmetry: \( x = 1 \) - Increases for \( x > 1 \), decreases for \( x < 1 \) - Minimum value: \( -4 \) Function (d): \( f(x) = -(x-1)^2 + 4 \) - Vertex at \( x = 1 \), \( f(1) = 4 \) - Axis of symmetry: \( x = 1 \) - Decreases for \( x > 1 \), increases for \( x < 1 \) - Maximum value: \( 4 \) Function (e): \( f(x) = (x-2)^2 - 1 \) - Vertex at \( x = 2 \), \( f(2) = -1 \) - Axis of symmetry: \( x = 2 \) - Increases for \( x > 2 \), decreases for \( x < 2 \) - Minimum value: \( -1 \) Function (f): \( g(x) = (x+1)^2 + 2 \) - Vertex at \( x = -1 \), \( g(-1) = 2 \) - Axis of symmetry: \( x = -1 \) - Increases for all \( x \) - Minimum value: \( 2 \) Function (g): \( g(x) = -(x+1)^2 - 2 \) - Vertex at \( x = -1 \), \( g(-1) = -2 \) - Axis of symmetry: \( x = -1 \) - Decreases for all \( x \) - Maximum value: \( -2 \) Function (h): \( g(x) = (x-2)^2 - 9 \) - Vertex at \( x = 2 \), \( g(2) = -9 \) - Axis of symmetry: \( x = 2 \) - Increases for \( x > 2 \), decreases for \( x < 2 \) - Minimum value: \( -9 \) Function (i): \( g(x) = 2(x+1)^2 - 2 \) - Vertex at \( x = -1 \), \( g(-1) = -2 \) - Axis of symmetry: \( x = -1 \) - Increases for all \( x \) - Minimum value: \( -2 \) Function (j): \( g(x) = (x-4)^2 - 2 \) - Vertex at \( x = 4 \), \( g(4) = -2 \) - Axis of symmetry: \( x = 4 \) - Increases for \( x > 4 \), decreases for \( x < 4 \) - Minimum value: \( -2 \)

Solution

To solve this exercise, we need to analyze each function given and determine the following: 1. Sketch the graph indicating the coordinates of the intercepts with the axes, the coordinates of the turning point, and the equation of the axis of symmetry. 2. Determine the values of \( x \) for which the graph increases and decreases. 3. Determine the maximum or minimum value of the graph. Let's start with function (a) \( f(x) = (x+1)^2 - 4 \). 1. Sketch the graph: The graph of \( f(x) = (x+1)^2 - 4 \) is a parabola that opens upwards. The vertex of the parabola is at \( x = -1 \) and \( f(-1) = -4 \). The axis of symmetry is the vertical line \( x = -1 \). 2. Determine the values of \( x \) for which the graph increases and decreases: The graph increases when \( x > -1 \) and decreases when \( x < -1 \). 3. Determine the maximum or minimum value of the graph: The maximum value of the graph is \( f(-1) = -4 \). Now, let's analyze the rest of the functions in the same manner.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Look at the evolution of quadratic functions: these delightful parabolas, forming the bedrock of algebra, were initially studied by ancient Greek mathematicians like Euclid and later described more rigorously by Arabic scholars in the Middle Ages. Their exploration paved the way for our understanding of roots and vertex forms! This mathematical journey has impacted fields as diverse as physics, engineering, and economics, solidifying quadratics as not just a math topic, but a real-life tool!

When tackling such problems, be sure to graph carefully, maintaining attention to vertex coordinates and intercepts—it’s easy to slip up with signs and symmetry! Remember that the parabola's direction (opening up or down) depends crucially on the coefficient of the squared term. Double-checking your turning points can save time and frustration—misplacing that vertex could lead to a complete mess. Engage with the functions joyfully, and soon enough, you'll feel like a mathematical maestro!

Related Questions

On étudie un groupe de 3000 sportifs qui pratiquent soit l'athlétisme dans le club A, soit le basketball dans le club B. En 2023, le club A compte 1700 membres et le club B en compte 1300. On décide de modéliser le nombre de membres du club A et du club B respectivement par deux suites a_{n} et b_{n}, où n désigne le rang de l'année à partir de 2023. L'année 2023 correspond au rang 0 . On a alors a_{0}=1700 et b_{0}=1300. Pour notre étude, on fait les hypothèses suivantes : - durant l'étude, aucun sportif ne quitte le groupe; - chaque année, 15% des sportifs du club A quittent ce club et adhèrent au club B; - chaqueannée, 10% des sportifs du club B quittent ce club et adhèrent au club A. 1) Calculer les nombres de membres de chaque club en 2024 . 2) Pour tout entier naturel n, déterminer une relation liant a_{n} et b_{n}. 3) Montrer que la suite a_{n} vérifie la relation suivante pour tout entier naturel n : a_{n+1}=0,75 a_{n}+300 4) a) Démontrer par récurrence que pour tout entier naturel n, on a: 1200 leq a_{n+1} leq a_{n} leq 1700. b) En déduire que la suite a_{n} converge. 5) Soit v_{n} la suite définie pour tout entier naturel n par v_{n}=a_{n}-1200. a) Démontrer que la suite v_{n} est géométrique. b) Exprimer v_{n} en fonction de n. c) En déduire que pour tout entier naturel n, a_{n}=500 * 0,75^{n}+1200 . 6) a) Déterminer la limite de la suite a_{n}. b) Interpréter le résultat de la question précédente dans le contexte de l'exercice.
Pre Calculus Feb 02, 2025
Try Premium now!
Upgrade to Premium and explore the full power of UpStudy!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy