Question
\( 1 \leftarrow \quad \begin{array}{l}\text { Evaluate the algebraic expression for } x=8 \text { and } y=-6 \\ |x-y| \\ |x-y| \text { equals } \square \text { when } x=8 \text { and } y=-6\end{array} \)
Ask by Harrington Vargas. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( |x - y| \) equals 14 when \( x = 8 \) and \( y = -6 \).
Solution
To evaluate the algebraic expression \( |x - y| \) for \( x = 8 \) and \( y = -6 \), follow these steps:
1. **Substitute the values of \( x \) and \( y \) into the expression:**
\[
|x - y| = |8 - (-6)|
\]
2. **Simplify inside the absolute value:**
\[
|8 + 6| = |14|
\]
3. **Evaluate the absolute value:**
\[
|14| = 14
\]
So, \( |x - y| \) equals **14** when \( x = 8 \) and \( y = -6 \).
\[
|x - y| \text{ equals } 14 \text{ when } x = 8 \text{ and } y = -6
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To evaluate the expression \( |x-y| \) for \( x=8 \) and \( y=-6 \), we first calculate \( x-y \): \[ x - y = 8 - (-6) = 8 + 6 = 14. \] Now, taking the absolute value: \[ |x-y| = |14| = 14. \] So, \( |x-y| \) equals \( 14 \) when \( x=8 \) and \( y=-6 \).