\( \begin{array}{l}\text { Subtract. Simplity your answer if you can. } \\ \begin{array}{l}\frac{14}{9}-\frac{2}{9}=\quad \frac{2}{a-1}-\frac{5}{a-1}=\quad \frac{x+4}{7}-\frac{x-5}{7}= \\ \frac{5}{2 n}-\frac{2}{n}= \\ \frac{3 x}{2 x+1}-\frac{x}{2 x+1}= \\ \frac{x+2}{x-4}-\frac{3}{x+1}= \\ 36\end{array} \\ \begin{array}{l}x-3 \\ x^{2}\end{array}= \\ x^{2}-9\end{array}=\begin{array}{l}\frac{x}{x}=\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let's dive into these subtractions and simplify them one by one! First, \(\frac{14}{9}-\frac{2}{9}=\frac{12}{9}=\frac{4}{3}\). Next, \(\frac{2}{a-1}-\frac{5}{a-1}=\frac{2-5}{a-1}=\frac{-3}{a-1}\). For the third expression, \(\frac{x+4}{7}-\frac{x-5}{7}=\frac{(x+4)-(x-5)}{7}=\frac{4+5}{7}=\frac{9}{7}\). Moving on, \(\frac{5}{2n}-\frac{2}{n}=\frac{5}{2n}-\frac{4}{2n}=\frac{1}{2n}\). Next, \(\frac{3x}{2x+1}-\frac{x}{2x+1}=\frac{(3x-x)}{2x+1}=\frac{2x}{2x+1}\). Now, \(\frac{x+2}{x-4}-\frac{3}{x+1}=\frac{(x+2)(x+1)-(3)(x-4)}{(x-4)(x+1)}\). Expanding gives us: \((x^2 + 3x + 2 - 3x + 12)=\frac{x^2 + 14}{(x-4)(x+1)}\). And for the last expression: \(36 = x-3 \quad \Rightarrow \quad x = 39\). Thus, \(x^2 - 9 = x^2 - 9\), which is already simplified. Lastly, \(\frac{x}{x}=1\), provided \(x \neq 0\). Math can feel like a puzzle, and with each piece we fit together, we get closer to the complete picture! Keep practicing and playing with numbers!