Question
upstudy study bank question image url

a) \( \frac{\tan x-\cot x}{\tan x+\cot x}=\operatorname{sen}^{2} x-\cos ^{2} x \)

Ask by Matthews Todd. in Ecuador
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{\tan x - \cot x}{\tan x + \cot x} = \sin^{2} x - \cos^{2} x \]

Solution

Para demostrar la identidad: \[ \frac{\tan x - \cot x}{\tan x + \cot x} = \sin^{2} x - \cos^{2} x \] seguimos los siguientes pasos: ### 1. Expresiones en términos de funciones seno y coseno Recordemos que: \[ \tan x = \frac{\sin x}{\cos x} \quad \text{y} \quad \cot x = \frac{\cos x}{\sin x} \] Sustituyendo estas definiciones en la expresión original: \[ \frac{\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \] ### 2. Simplificación del numerador y denominador **Numerador:** \[ \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} = \frac{\sin^{2} x - \cos^{2} x}{\sin x \cos x} \] **Denominador:** \[ \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^{2} x + \cos^{2} x}{\sin x \cos x} \] ### 3. Sustitución en la expresión original Sustituyendo las simplificaciones del numerador y denominador: \[ \frac{\frac{\sin^{2} x - \cos^{2} x}{\sin x \cos x}}{\frac{\sin^{2} x + \cos^{2} x}{\sin x \cos x}} = \frac{\sin^{2} x - \cos^{2} x}{\sin^{2} x + \cos^{2} x} \] ### 4. Aplicando la identidad fundamental de las funciones trigonométricas Sabemos que: \[ \sin^{2} x + \cos^{2} x = 1 \] Entonces, la expresión se simplifica a: \[ \frac{\sin^{2} x - \cos^{2} x}{1} = \sin^{2} x - \cos^{2} x \] ### 5. Conclusión Hemos demostrado que: \[ \frac{\tan x - \cot x}{\tan x + \cot x} = \sin^{2} x - \cos^{2} x \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the equation \( \frac{\tan x - \cot x}{\tan x + \cot x} = \sin^2 x - \cos^2 x \), we can first express \(\tan x\) and \(\cot x\) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x} \] Substituting these into the left side gives: \[ \frac{\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} = \frac{\frac{\sin^2 x - \cos^2 x}{\sin x \cos x}}{\frac{\sin^2 x + \cos^2 x}{\sin x \cos x}} = \frac{\sin^2 x - \cos^2 x}{\sin^2 x + \cos^2 x} \] Given that \(\sin^2 x + \cos^2 x = 1\), we can simplify the left side to: \[ \sin^2 x - \cos^2 x \] Thus, our equation becomes: \[ \frac{\sin^2 x - \cos^2 x}{1} = \sin^2 x - \cos^2 x \] Since both sides are equal, our original identity holds true for \(x\) values where \(\sin x \neq 0\) and \(\cos x \neq 0\). This result showcases that the equation is valid for most angles in their respective ranges, excluding specific multiples of \(\frac{\pi}{2}\) where sine and cosine take on integral values.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy