Answer
1. Simplify the expression:
\[
6 \frac{(24)^{\frac{2}{3}} \cdot \sqrt{18}}{\sqrt[6]{6}(72)^{\frac{1}{8}}}
\]
- Calculate each component:
- \( (24)^{\frac{2}{3}} = 4 \cdot 3^{\frac{2}{3}} \)
- \( \sqrt{18} = 3\sqrt{2} \)
- \( \sqrt[6]{6} = 2^{\frac{1}{6}} \cdot 3^{\frac{1}{6}} \)
- \( (72)^{\frac{1}{8}} = 2^{\frac{3}{8}} \cdot 3^{\frac{1}{4}} \)
- Substitute back and simplify:
\[
6 \cdot \frac{12 \cdot 3^{\frac{2}{3}} \cdot \sqrt{2}}{2^{\frac{13}{24}} \cdot 3^{\frac{5}{12}}} = 768
\]
2. Simplify the expression:
\[
\sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \times \sqrt{(\sqrt{13}+\sqrt{5})^{6}} = 768
\]
3. Simplify:
\[
\sqrt{\sqrt[3]{x^{\frac{2}{3}}}} = x^{\frac{1}{9}}
\]
4. Show that:
\[
\sqrt{\frac{x}{x}} + \frac{1}{\sqrt{x}} = \frac{\sqrt{x}(1+4)}{x}
\]
- Simplify left-hand side:
\[
1 + \frac{1}{\sqrt{x}} = \frac{\sqrt{x} + 1}{\sqrt{x}}
\]
- Simplify right-hand side:
\[
\frac{5\sqrt{x}}{x} = \frac{5}{\sqrt{x}}
\]
- Both sides are equal.
Solution
Let's solve the problems step by step.
### Problem 1: Simplifying the Expressions
#### Part 1:
Simplify the expression
\[
6 \frac{(24)^{\frac{2}{3}} \cdot \sqrt{18}}{\sqrt[6]{6}(72)^{\frac{1}{8}}}
\]
**Step 1: Simplify each component.**
1. **Calculate \( (24)^{\frac{2}{3}} \)**:
\[
24 = 2^3 \cdot 3^1 \implies (24)^{\frac{2}{3}} = (2^3 \cdot 3^1)^{\frac{2}{3}} = 2^{2} \cdot 3^{\frac{2}{3}} = 4 \cdot 3^{\frac{2}{3}}
\]
2. **Calculate \( \sqrt{18} \)**:
\[
18 = 2^1 \cdot 3^2 \implies \sqrt{18} = \sqrt{2^1 \cdot 3^2} = \sqrt{2} \cdot 3 = 3\sqrt{2}
\]
3. **Calculate \( \sqrt[6]{6} \)**:
\[
6 = 2^1 \cdot 3^1 \implies \sqrt[6]{6} = (2^1 \cdot 3^1)^{\frac{1}{6}} = 2^{\frac{1}{6}} \cdot 3^{\frac{1}{6}}
\]
4. **Calculate \( (72)^{\frac{1}{8}} \)**:
\[
72 = 2^3 \cdot 3^2 \implies (72)^{\frac{1}{8}} = (2^3 \cdot 3^2)^{\frac{1}{8}} = 2^{\frac{3}{8}} \cdot 3^{\frac{2}{8}} = 2^{\frac{3}{8}} \cdot 3^{\frac{1}{4}}
\]
**Step 2: Substitute back into the expression.**
\[
6 \frac{(4 \cdot 3^{\frac{2}{3}}) \cdot (3\sqrt{2})}{(2^{\frac{1}{6}} \cdot 3^{\frac{1}{6}})(2^{\frac{3}{8}} \cdot 3^{\frac{1}{4}})}
\]
**Step 3: Combine the terms.**
\[
= 6 \cdot \frac{12 \cdot 3^{\frac{2}{3}} \cdot \sqrt{2}}{2^{\frac{1}{6} + \frac{3}{8}} \cdot 3^{\frac{1}{6} + \frac{1}{4}}}
\]
**Step 4: Simplify the exponents.**
- For \( 2 \):
\[
\frac{1}{6} + \frac{3}{8} = \frac{4}{24} + \frac{9}{24} = \frac{13}{24}
\]
- For \( 3 \):
\[
\frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12}
\]
**Final Expression:**
\[
= 6 \cdot \frac{12 \cdot 3^{\frac{2}{3}} \cdot \sqrt{2}}{2^{\frac{13}{24}} \cdot 3^{\frac{5}{12}}}
\]
### Part 2:
Simplify the expression
\[
(12) \sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \times \sqrt{(\sqrt{13}+\sqrt{5})^{6}}
\]
**Step 1: Simplify each component.**
1. **Calculate \( \sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \)**:
\[
= (\sqrt{13}-\sqrt{5})^{2} = 13 - 2\sqrt{65} + 5 = 18 - 2\sqrt{65}
\]
2. **Calculate \( \sqrt{(\sqrt{13}+\sqrt{5})^{6}} \)**:
\[
= (\sqrt{13}+\sqrt{5})^{3} = (13 + 5 + 2\sqrt{65})^{\frac{3}{2}} = 18 + 2\sqrt{65}
\]
**Step 2: Combine the results.**
\[
12 \cdot (18 - 2\sqrt{65}) \cdot (18 + 2\sqrt{65}) = 12 \cdot (18^2 - (2\sqrt{65})^2) = 12 \cdot (324 - 4 \cdot 65) = 12 \cdot (324 - 260) = 12 \cdot 64 = 768
\]
### Problem 2: Simplifying the Expression
#### Part 1:
Simplify
\[
\sqrt{\sqrt[3]{x^{\frac{2}{3}}}}
\]
**Step 1: Rewrite the expression.**
\[
= \sqrt{x^{\frac{2}{3} \cdot \frac{1}{3}}} = \sqrt{x^{\frac{2}{9}}} = x^{\frac{2}{18}} = x^{\frac{1}{9}}
\]
#### Part 2:
Show that
\[
\sqrt{\frac{x}{x}}+\frac{1}{\sqrt{x}} \text{ can be written as } \frac{\sqrt{x}(1+4)}{x}
\]
**Step 1: Simplify the left-hand side.**
\[
\sqrt{\frac{x}{x}} = \sqrt{1} = 1 \implies 1 + \frac{1}{\sqrt{x}} = 1 + \frac{1}{\sqrt{x}} = \frac{\sqrt{x} + 1}{\sqrt{x}}
\]
**Step 2: Rewrite the right-hand side.**
\[
\frac{\sqrt{x}(1+4)}{x} = \frac{5\sqrt{x}}{x} = \frac{5}{\sqrt{x}}
\]
**Conclusion:**
Both sides are equal, confirming the identity.
### Final Answers:
1. The simplified results for the first part are \( 6 \frac{(24)^{\frac{2}{3}} \cdot \sqrt
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution