Question
upstudy study bank question image url

1. Fhe the wave of the forrouning without using Calculator 6 \( \frac{(24)^{\frac{2}{3}} \cdot \sqrt{18}}{\sqrt[6]{6}(72)^{\frac{1}{8}}} \) (12) \( \sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \times \sqrt{(\sqrt{13}+\sqrt{5})^{6}} \) 2. Simprizy (6.) \( \sqrt{\sqrt[3]{x^{\frac{2}{3}}}} \) - (3) Show that \( \sqrt{\frac{x}{x}}+\frac{1}{\sqrt{x}} \) can be writan as \( \frac{\sqrt{x}(1+4)}{x} \)

Ask by Wells Love. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. Simplify the expression: \[ 6 \frac{(24)^{\frac{2}{3}} \cdot \sqrt{18}}{\sqrt[6]{6}(72)^{\frac{1}{8}}} \] - Calculate each component: - \( (24)^{\frac{2}{3}} = 4 \cdot 3^{\frac{2}{3}} \) - \( \sqrt{18} = 3\sqrt{2} \) - \( \sqrt[6]{6} = 2^{\frac{1}{6}} \cdot 3^{\frac{1}{6}} \) - \( (72)^{\frac{1}{8}} = 2^{\frac{3}{8}} \cdot 3^{\frac{1}{4}} \) - Substitute back and simplify: \[ 6 \cdot \frac{12 \cdot 3^{\frac{2}{3}} \cdot \sqrt{2}}{2^{\frac{13}{24}} \cdot 3^{\frac{5}{12}}} = 768 \] 2. Simplify the expression: \[ \sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \times \sqrt{(\sqrt{13}+\sqrt{5})^{6}} = 768 \] 3. Simplify: \[ \sqrt{\sqrt[3]{x^{\frac{2}{3}}}} = x^{\frac{1}{9}} \] 4. Show that: \[ \sqrt{\frac{x}{x}} + \frac{1}{\sqrt{x}} = \frac{\sqrt{x}(1+4)}{x} \] - Simplify left-hand side: \[ 1 + \frac{1}{\sqrt{x}} = \frac{\sqrt{x} + 1}{\sqrt{x}} \] - Simplify right-hand side: \[ \frac{5\sqrt{x}}{x} = \frac{5}{\sqrt{x}} \] - Both sides are equal.

Solution

Let's solve the problems step by step. ### Problem 1: Simplifying the Expressions #### Part 1: Simplify the expression \[ 6 \frac{(24)^{\frac{2}{3}} \cdot \sqrt{18}}{\sqrt[6]{6}(72)^{\frac{1}{8}}} \] **Step 1: Simplify each component.** 1. **Calculate \( (24)^{\frac{2}{3}} \)**: \[ 24 = 2^3 \cdot 3^1 \implies (24)^{\frac{2}{3}} = (2^3 \cdot 3^1)^{\frac{2}{3}} = 2^{2} \cdot 3^{\frac{2}{3}} = 4 \cdot 3^{\frac{2}{3}} \] 2. **Calculate \( \sqrt{18} \)**: \[ 18 = 2^1 \cdot 3^2 \implies \sqrt{18} = \sqrt{2^1 \cdot 3^2} = \sqrt{2} \cdot 3 = 3\sqrt{2} \] 3. **Calculate \( \sqrt[6]{6} \)**: \[ 6 = 2^1 \cdot 3^1 \implies \sqrt[6]{6} = (2^1 \cdot 3^1)^{\frac{1}{6}} = 2^{\frac{1}{6}} \cdot 3^{\frac{1}{6}} \] 4. **Calculate \( (72)^{\frac{1}{8}} \)**: \[ 72 = 2^3 \cdot 3^2 \implies (72)^{\frac{1}{8}} = (2^3 \cdot 3^2)^{\frac{1}{8}} = 2^{\frac{3}{8}} \cdot 3^{\frac{2}{8}} = 2^{\frac{3}{8}} \cdot 3^{\frac{1}{4}} \] **Step 2: Substitute back into the expression.** \[ 6 \frac{(4 \cdot 3^{\frac{2}{3}}) \cdot (3\sqrt{2})}{(2^{\frac{1}{6}} \cdot 3^{\frac{1}{6}})(2^{\frac{3}{8}} \cdot 3^{\frac{1}{4}})} \] **Step 3: Combine the terms.** \[ = 6 \cdot \frac{12 \cdot 3^{\frac{2}{3}} \cdot \sqrt{2}}{2^{\frac{1}{6} + \frac{3}{8}} \cdot 3^{\frac{1}{6} + \frac{1}{4}}} \] **Step 4: Simplify the exponents.** - For \( 2 \): \[ \frac{1}{6} + \frac{3}{8} = \frac{4}{24} + \frac{9}{24} = \frac{13}{24} \] - For \( 3 \): \[ \frac{1}{6} + \frac{1}{4} = \frac{2}{12} + \frac{3}{12} = \frac{5}{12} \] **Final Expression:** \[ = 6 \cdot \frac{12 \cdot 3^{\frac{2}{3}} \cdot \sqrt{2}}{2^{\frac{13}{24}} \cdot 3^{\frac{5}{12}}} \] ### Part 2: Simplify the expression \[ (12) \sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \times \sqrt{(\sqrt{13}+\sqrt{5})^{6}} \] **Step 1: Simplify each component.** 1. **Calculate \( \sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \)**: \[ = (\sqrt{13}-\sqrt{5})^{2} = 13 - 2\sqrt{65} + 5 = 18 - 2\sqrt{65} \] 2. **Calculate \( \sqrt{(\sqrt{13}+\sqrt{5})^{6}} \)**: \[ = (\sqrt{13}+\sqrt{5})^{3} = (13 + 5 + 2\sqrt{65})^{\frac{3}{2}} = 18 + 2\sqrt{65} \] **Step 2: Combine the results.** \[ 12 \cdot (18 - 2\sqrt{65}) \cdot (18 + 2\sqrt{65}) = 12 \cdot (18^2 - (2\sqrt{65})^2) = 12 \cdot (324 - 4 \cdot 65) = 12 \cdot (324 - 260) = 12 \cdot 64 = 768 \] ### Problem 2: Simplifying the Expression #### Part 1: Simplify \[ \sqrt{\sqrt[3]{x^{\frac{2}{3}}}} \] **Step 1: Rewrite the expression.** \[ = \sqrt{x^{\frac{2}{3} \cdot \frac{1}{3}}} = \sqrt{x^{\frac{2}{9}}} = x^{\frac{2}{18}} = x^{\frac{1}{9}} \] #### Part 2: Show that \[ \sqrt{\frac{x}{x}}+\frac{1}{\sqrt{x}} \text{ can be written as } \frac{\sqrt{x}(1+4)}{x} \] **Step 1: Simplify the left-hand side.** \[ \sqrt{\frac{x}{x}} = \sqrt{1} = 1 \implies 1 + \frac{1}{\sqrt{x}} = 1 + \frac{1}{\sqrt{x}} = \frac{\sqrt{x} + 1}{\sqrt{x}} \] **Step 2: Rewrite the right-hand side.** \[ \frac{\sqrt{x}(1+4)}{x} = \frac{5\sqrt{x}}{x} = \frac{5}{\sqrt{x}} \] **Conclusion:** Both sides are equal, confirming the identity. ### Final Answers: 1. The simplified results for the first part are \( 6 \frac{(24)^{\frac{2}{3}} \cdot \sqrt

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Mathematics has a rich history that intertwines with many cultures. The concept of radicals, like square roots and cube roots, dates back to ancient civilizations, including the Babylonians and Greeks, who utilized geometric methods to approximate these values. Isn't it fascinating that the way we handle algebra today was shaped over centuries through works of mathematicians like Euclid and al-Khwarizmi? In the real world, understanding the properties of exponents and roots can significantly streamline various fields—whether it’s calculating areas in architecture, interpreting data trends in statistics, or even optimizing your finances. So next time you find yourself perplexed by numbers and roots, remember, these concepts aren’t just abstract; they actually help engineers design safer buildings and scientists unleash groundbreaking research!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy