Question
upstudy study bank question image url

Fully simplify \( \left(36 n^{10} p^{5}\right)^{\frac{3}{2}} \)

Ask by Mullins Reid. in Spain
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( 216\, n^{15}\, p^{7}\, \sqrt{p} \)

Solution

To fully simplify \( \left(36 n^{10} p^{5}\right)^{\frac{3}{2}} \), follow these steps: 1. **Apply the Exponent to Each Factor:** \[ \left(36 n^{10} p^{5}\right)^{\frac{3}{2}} = 36^{\frac{3}{2}} \cdot \left(n^{10}\right)^{\frac{3}{2}} \cdot \left(p^{5}\right)^{\frac{3}{2}} \] 2. **Simplify Each Term Individually:** - **For \( 36^{\frac{3}{2}} \):** \[ 36 = 6^2 \quad \text{so} \quad 36^{\frac{3}{2}} = (6^2)^{\frac{3}{2}} = 6^{3} = 216 \] - **For \( \left(n^{10}\right)^{\frac{3}{2}} \):** \[ \left(n^{10}\right)^{\frac{3}{2}} = n^{10 \cdot \frac{3}{2}} = n^{15} \] - **For \( \left(p^{5}\right)^{\frac{3}{2}} \):** \[ \left(p^{5}\right)^{\frac{3}{2}} = p^{5 \cdot \frac{3}{2}} = p^{\frac{15}{2}} = p^{7} \cdot p^{\frac{1}{2}} = p^{7} \sqrt{p} \] 3. **Combine All Simplified Terms:** \[ 216 \cdot n^{15} \cdot p^{7} \sqrt{p} \] **Final Simplified Form:** \[ 216\, n^{15}\, p^{7}\, \sqrt{p} \] **Answer:** After simplifying, the expression is 216 n¹⁵ p⁷ multiplied by √p. Thus, 216 n^15 p^7 √p

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's simplify the expression \( \left(36 n^{10} p^{5}\right)^{\frac{3}{2}} \). First, we can use the property of exponents that states \( (a \cdot b)^{m} = a^{m} \cdot b^{m} \). This allows us to distribute the exponent to each factor inside the parentheses: \[ \left(36 n^{10} p^{5}\right)^{\frac{3}{2}} = 36^{\frac{3}{2}} \cdot \left(n^{10}\right)^{\frac{3}{2}} \cdot \left(p^{5}\right)^{\frac{3}{2}}. \] Now, we will evaluate each part. 1. **Calculating \( 36^{\frac{3}{2}} \)**: \[ 36^{\frac{3}{2}} = (36^{\frac{1}{2}})^{3} = 6^{3} = 216. \] 2. **Calculating \( \left(n^{10}\right)^{\frac{3}{2}} \)**: \[ \left(n^{10}\right)^{\frac{3}{2}} = n^{10 \cdot \frac{3}{2}} = n^{15}. \] 3. **Calculating \( \left(p^{5}\right)^{\frac{3}{2}} \)**: \[ \left(p^{5}\right)^{\frac{3}{2}} = p^{5 \cdot \frac{3}{2}} = p^{\frac{15}{2}}. \] Putting all these results together, we have: \[ \left(36 n^{10} p^{5}\right)^{\frac{3}{2}} = 216 n^{15} p^{\frac{15}{2}}. \] Thus, the fully simplified expression is: \[ \boxed{216 n^{15} p^{\frac{15}{2}}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy