(c) \( \frac{\frac{3}{4} \times \frac{2}{5} \div 2 \frac{2}{5}}{\left(5 \frac{1}{6}-2 \frac{4}{9}\right) \times \frac{9}{28}} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To tackle the expression, let’s first simplify the numerator and the denominator separately. For the numerator \( \frac{3}{4} \times \frac{2}{5} \div 2 \frac{2}{5} \): 1. Convert \( 2 \frac{2}{5} \) to an improper fraction: \( 2 \frac{2}{5} = \frac{12}{5} \). 2. Now continue: \[ \frac{3}{4} \times \frac{2}{5} = \frac{6}{20} = \frac{3}{10}. \] 3. Then divide by \( \frac{12}{5} \): \[ \frac{3}{10} \div \frac{12}{5} = \frac{3}{10} \times \frac{5}{12} = \frac{15}{120} = \frac{1}{8}. \] Now for the denominator \( (5 \frac{1}{6} - 2 \frac{4}{9}) \times \frac{9}{28} \): 1. Convert the mixed numbers: - \( 5 \frac{1}{6} = \frac{31}{6} \) - \( 2 \frac{4}{9} = \frac{22}{9} \) 2. Now perform the subtraction: \[ \frac{31}{6} - \frac{22}{9} = \frac{31 \times 3}{18} - \frac{22 \times 2}{18} = \frac{93 - 44}{18} = \frac{49}{18}. \] 3. Next, multiply by \( \frac{9}{28} \): \[ \frac{49}{18} \times \frac{9}{28} = \frac{441}{504} = \frac{63}{72} = \frac{7}{8}. \] Finally, we can combine everything: \[ \frac{\frac{1}{8}}{\frac{7}{8}} = \frac{1}{7}. \] Thus, the value of the original expression is \( \frac{1}{7} \).