\( \frac{\left(\frac{3^{2}}{3^{4} \cdot 3^{4}}\right)^{3}}{\text { 4) } \frac{2^{3} \cdot 2^{2}}{2^{2}}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To simplify the expression \( \frac{\left(\frac{3^{2}}{3^{4} \cdot 3^{4}}\right)^{3}}{\frac{2^{3} \cdot 2^{2}}{2^{2}}} \), let's break it down step-by-step. First, simplify the numerator: 1. \( \frac{3^2}{3^4 \cdot 3^4} = \frac{3^2}{3^{4+4}} = \frac{3^2}{3^8} = 3^{2-8} = 3^{-6} \) 2. Now, apply the exponent: \[ \left(3^{-6}\right)^{3} = 3^{-18} \] Then, simplify the denominator: 1. \( \frac{2^3 \cdot 2^2}{2^2} = \frac{2^{3+2}}{2^2} = \frac{2^5}{2^2} = 2^{5-2} = 2^3 \) Now, we can rewrite the entire expression: \[ \frac{3^{-18}}{2^3} = 3^{-18} \cdot 2^{-3} = \frac{1}{3^{18} \cdot 2^{3}} \] Thus, the simplified expression is: \[ \frac{1}{3^{18} \cdot 2^{3}} \]