Question
upstudy study bank question image url

d) \( 3 x+y=-9 \) \( 4 x-3 y=1 \)

Ask by Black Franklin. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución es \( x = -2 \) y \( y = -3 \).

Solution

Para resolver el sistema de ecuaciones: 1. \( 3x + y = -9 \) 2. \( 4x - 3y = 1 \) **Paso 1: Despejar una variable en una de las ecuaciones.** Vamos a despejar \( y \) de la primera ecuación. \[ 3x + y = -9 \] \[ y = -9 - 3x \] **Paso 2: Sustituir la expresión obtenida en la segunda ecuación.** Sustituyendo \( y = -9 - 3x \) en la segunda ecuación: \[ 4x - 3(-9 - 3x) = 1 \] \[ 4x + 27 + 9x = 1 \] \[ 13x + 27 = 1 \] **Paso 3: Resolver para \( x \).** \[ 13x = 1 - 27 \] \[ 13x = -26 \] \[ x = \frac{-26}{13} \] \[ x = -2 \] **Paso 4: Encontrar el valor de \( y \) usando el valor de \( x \).** Usando la expresión \( y = -9 - 3x \): \[ y = -9 - 3(-2) \] \[ y = -9 + 6 \] \[ y = -3 \] **Conclusión:** La solución del sistema es: \[ x = -2 \] \[ y = -3 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve this system of equations, you can use the elimination or substitution method. Let’s opt for the substitution method. First, solve the first equation for \( y \): \( y = -9 - 3x \). Now, substitute this expression for \( y \) in the second equation \( 4x - 3(-9 - 3x) = 1 \). After simplifying and solving for \( x \), you'll find the value of \( x \), and then you can plug it back to find \( y \). After solving, you'll get \( x = 2 \) and \( y = -15 \). So, your solution is \( (2, -15) \). You can also check your solution by plugging these values back into the original equations to ensure they both hold true!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy