Question
upstudy study bank question image url

5. \( f(x)=\left(5 x^{2}+4 x\right)^{3} \)

Ask by Ayala Long. in Puerto Rico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( f(x) = \left(5x^{2} + 4x\right)^{3} \) es \( f'(x) = 3\left(5x^{2} + 4x\right)^{2} \cdot (10x + 4) \).

Solution

Para la función \( f(x) = \left(5x^{2} + 4x\right)^{3} \), si deseas calcular la derivada \( f'(x) \), puedes utilizar la regla de la cadena. A continuación se muestra el cálculo detallado: ### Cálculo de la Derivada 1. **Identifica la función exterior e interior:** - Función exterior: \( u^{3} \) donde \( u = 5x^{2} + 4x \) - Función interior: \( u = 5x^{2} + 4x \) 2. **Aplica la regla de la cadena:** \[ f'(x) = \frac{d}{dx}\left(u^{3}\right) = 3u^{2} \cdot \frac{du}{dx} \] 3. **Calcula la derivada de la función interior \( u \):** \[ \frac{du}{dx} = \frac{d}{dx}\left(5x^{2} + 4x\right) = 10x + 4 \] 4. **Sustituye \( u \) y \( \frac{du}{dx} \) en la expresión de la derivada:** \[ f'(x) = 3\left(5x^{2} + 4x\right)^{2} \cdot (10x + 4) \] ### Resultado Final \[ f'(x) = 3\left(5x^{2} + 4x\right)^{2} \cdot (10x + 4) \] Esta es la derivada de la función dada utilizando la regla de la cadena.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's take a trip down memory lane! The function \( f(x) = (5x^2 + 4x)^3 \) is a perfect representation of the power of polynomial expressions. Polynomials date back to ancient civilizations, where mathematicians like Babylonians and Greeks were utilizing them to solve practical problems involving land measurement and trade. They laid the groundwork for the complex polynomial functions we delight in today! But wait, there’s more! If you’re about to tackle the derivative of this function, beware of common pitfalls. Remember to use the chain rule: you'll need to differentiate the outer function (the cubic) and then multiply it by the derivative of the inner polynomial \( 5x^2 + 4x \). A frequent mistake is forgetting to apply this chain rule correctly, leading to incorrect results. Happy deriving!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy