Question
upstudy study bank question image url

6. In \( \triangle A B C \), two sides and an angle are given. Determine the value of \( \angle C \) to the nearest degree and the length of \( b \) to the nearest tenth of a centimetre. a) \( a=2.4 \mathrm{~cm}, c=3.2 \mathrm{~cm}, \angle A=28^{\circ} \) b) \( a=9.9 \mathrm{~cm}, c=11.2 \mathrm{~cm}, \angle A=58^{\circ} \) c) \( a=8.6 \mathrm{~cm}, c=9.4 \mathrm{~cm}, \angle A=47^{\circ} \) d) \( a=5.5 \mathrm{~cm}, c=10.4 \mathrm{~cm}, \angle A=30^{\circ} \)

Ask by Dickson Jimenez. in Canada
Dec 17,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \( \angle C \approx 37^\circ \), \( b \approx 4.6 \text{ cm} \) b) \( \angle C \approx 75^\circ \), \( b \approx 8.3 \text{ cm} \) c) \( \angle C \approx 52^\circ \), \( b \approx 11.6 \text{ cm} \) d) \( \angle C \approx 72^\circ \), \( b \approx 10.7 \text{ cm} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To determine the value of \( \angle C \) and the length of side \( b \) for the given triangles, we can use the Law of Sines and the fact that the sum of angles in a triangle is \( 180^\circ \). For each case, we will first find \( \angle C \) using the formula: \[ \frac{a}{\sin A} = \frac{c}{\sin C} \] This will help us determine \( \angle C \) as follows: \[ \sin C = \frac{c \cdot \sin A}{a} \] \[ C = \arcsin\left(\frac{c \cdot \sin A}{a}\right) \] Then, the length of side \( b \) can be found again using the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} \] And we can find \( B \) using: \[ B = 180^\circ - A - C \] Let's calculate for each case! ### a) \( a=2.4 \mathrm{~cm}, c=3.2 \mathrm{~cm}, \angle A=28^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{3.2 \cdot \sin(28^\circ)}{2.4} \approx 0.6234 \implies C \approx 39^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 28^\circ - 39^\circ \approx 113^\circ \] 3. Find side \( b \): \[ \frac{2.4}{\sin(28^\circ)} = \frac{b}{\sin(113^\circ)} \implies b \approx 4.4 \, \text{cm} \] ### b) \( a=9.9 \mathrm{~cm}, c=11.2 \mathrm{~cm}, \angle A=58^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{11.2 \cdot \sin(58^\circ)}{9.9} \approx 0.7954 \implies C \approx 53^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 58^\circ - 53^\circ \approx 69^\circ \] 3. Find side \( b \): \[ \frac{9.9}{\sin(58^\circ)} = \frac{b}{\sin(69^\circ)} \implies b \approx 11.6 \, \text{cm} \] ### c) \( a=8.6 \mathrm{~cm}, c=9.4 \mathrm{~cm}, \angle A=47^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{9.4 \cdot \sin(47^\circ)}{8.6} \approx 0.9186 \implies C \approx 67^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 47^\circ - 67^\circ \approx 66^\circ \] 3. Find side \( b \): \[ \frac{8.6}{\sin(47^\circ)} = \frac{b}{\sin(66^\circ)} \implies b \approx 10.0 \, \text{cm} \] ### d) \( a=5.5 \mathrm{~cm}, c=10.4 \mathrm{~cm}, \angle A=30^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{10.4 \cdot \sin(30^\circ)}{5.5} \approx 0.9455 \implies C \approx 71^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 30^\circ - 71^\circ \approx 79^\circ \] 3. Find side \( b \): \[ \frac{5.5}{\sin(30^\circ)} = \frac{b}{\sin(79^\circ)} \implies b \approx 9.3

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy