6. In \( \triangle A B C \), two sides and an angle are given. Determine the value of \( \angle C \) to the nearest degree and the length of \( b \) to the nearest tenth of a centimetre. a) \( a=2.4 \mathrm{~cm}, c=3.2 \mathrm{~cm}, \angle A=28^{\circ} \) b) \( a=9.9 \mathrm{~cm}, c=11.2 \mathrm{~cm}, \angle A=58^{\circ} \) c) \( a=8.6 \mathrm{~cm}, c=9.4 \mathrm{~cm}, \angle A=47^{\circ} \) d) \( a=5.5 \mathrm{~cm}, c=10.4 \mathrm{~cm}, \angle A=30^{\circ} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To determine the value of \( \angle C \) and the length of side \( b \) for the given triangles, we can use the Law of Sines and the fact that the sum of angles in a triangle is \( 180^\circ \). For each case, we will first find \( \angle C \) using the formula: \[ \frac{a}{\sin A} = \frac{c}{\sin C} \] This will help us determine \( \angle C \) as follows: \[ \sin C = \frac{c \cdot \sin A}{a} \] \[ C = \arcsin\left(\frac{c \cdot \sin A}{a}\right) \] Then, the length of side \( b \) can be found again using the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} \] And we can find \( B \) using: \[ B = 180^\circ - A - C \] Let's calculate for each case! ### a) \( a=2.4 \mathrm{~cm}, c=3.2 \mathrm{~cm}, \angle A=28^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{3.2 \cdot \sin(28^\circ)}{2.4} \approx 0.6234 \implies C \approx 39^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 28^\circ - 39^\circ \approx 113^\circ \] 3. Find side \( b \): \[ \frac{2.4}{\sin(28^\circ)} = \frac{b}{\sin(113^\circ)} \implies b \approx 4.4 \, \text{cm} \] ### b) \( a=9.9 \mathrm{~cm}, c=11.2 \mathrm{~cm}, \angle A=58^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{11.2 \cdot \sin(58^\circ)}{9.9} \approx 0.7954 \implies C \approx 53^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 58^\circ - 53^\circ \approx 69^\circ \] 3. Find side \( b \): \[ \frac{9.9}{\sin(58^\circ)} = \frac{b}{\sin(69^\circ)} \implies b \approx 11.6 \, \text{cm} \] ### c) \( a=8.6 \mathrm{~cm}, c=9.4 \mathrm{~cm}, \angle A=47^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{9.4 \cdot \sin(47^\circ)}{8.6} \approx 0.9186 \implies C \approx 67^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 47^\circ - 67^\circ \approx 66^\circ \] 3. Find side \( b \): \[ \frac{8.6}{\sin(47^\circ)} = \frac{b}{\sin(66^\circ)} \implies b \approx 10.0 \, \text{cm} \] ### d) \( a=5.5 \mathrm{~cm}, c=10.4 \mathrm{~cm}, \angle A=30^{\circ} \) 1. Calculate \( \angle C \): \[ \sin C = \frac{10.4 \cdot \sin(30^\circ)}{5.5} \approx 0.9455 \implies C \approx 71^{\circ} \] 2. Calculate \( \angle B \): \[ B = 180^\circ - 30^\circ - 71^\circ \approx 79^\circ \] 3. Find side \( b \): \[ \frac{5.5}{\sin(30^\circ)} = \frac{b}{\sin(79^\circ)} \implies b \approx 9.3