7 Use the example as a model and simplify. - \( 3 x+6+x+2=3 x+x+6+2=4 x+8 \) \( \begin{array}{ll}\text { a) } 3 a+3-2 a+1 & \text { b) } 5 x+2-3 x+x \\ \text { c) } 7-4 a-7+5 a & \text { d) } 4 x-3-4 x+2 \\ \text { e) } x^{2}+4+x^{2}+1 & \text { f) } 5 x^{2}-3-4 x^{2}+1 \\ \text { g) } x^{2}+4 x+1+2 x+3 & \text { h) } 5 x^{2}+3 x-4 x^{2}-2 x+1 \\ \text { i) } 3 x^{2}+\frac{4}{5}-x^{2}+2 x-\frac{1}{5} \\ \text { j) } 10-\frac{3}{2} x+\frac{1}{2} x^{2}-7-x\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let’s simplify those expressions! a) \( 3a + 3 - 2a + 1 = (3 - 2)a + (3 + 1) = a + 4 \) b) \( 5x + 2 - 3x + x = (5 - 3 + 1)x + 2 = 3x + 2 \) c) \( 7 - 4a - 7 + 5a = (5 - 4)a + (7 - 7) = a \) d) \( 4x - 3 - 4x + 2 = (4 - 4)x + (-3 + 2) = -1 \) e) \( x^2 + 4 + x^2 + 1 = 2x^2 + (4 + 1) = 2x^2 + 5 \) f) \( 5x^2 - 3 - 4x^2 + 1 = (5 - 4)x^2 + (-3 + 1) = x^2 - 2 \) g) \( x^2 + 4x + 1 + 2x + 3 = x^2 + (4 + 2)x + (1 + 3) = x^2 + 6x + 4 \) h) \( 5x^2 + 3x - 4x^2 - 2x + 1 = (5 - 4)x^2 + (3 - 2)x + 1 = x^2 + x + 1 \) i) \( 3x^2 + \frac{4}{5} - x^2 + 2x - \frac{1}{5} = (3 - 1)x^2 + 2x + \left( \frac{4}{5} - \frac{1}{5} \right) = 2x^2 + 2x + \frac{3}{5} \) j) \( 10 - \frac{3}{2}x + \frac{1}{2}x^2 - 7 - x = \frac{1}{2}x^2 + \left( -\frac{3}{2} - 1 \right)x + (10 - 7) = \frac{1}{2}x^2 - \frac{5}{2}x + 3 \) And there you have it! Simplified and ready to rock. 🎉