Question
Let \( f(x)=\frac{x}{x-7} \) and \( g(x)=\frac{4}{x} \). Find the following functions. Simplify your answers. \( f(g(x))=\frac{4}{-7 x} \) \( g(f(x))= \)
Ask by Gough Logan. in the United States
Jan 27,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( g(f(x)) = \frac{4x - 28}{x} \)
Solution
To find \( g(f(x)) \), we'll perform the composition of the two functions \( f \) and \( g \).
Given:
\[
f(x) = \frac{x}{x - 7} \quad \text{and} \quad g(x) = \frac{4}{x}
\]
**Step-by-Step Calculation:**
1. **Compose the Functions:**
\[
g(f(x)) = g\left( \frac{x}{x - 7} \right)
\]
2. **Substitute \( f(x) \) into \( g(x) \):**
\[
g\left( \frac{x}{x - 7} \right) = \frac{4}{\frac{x}{x - 7}}
\]
3. **Simplify the Expression:**
\[
\frac{4}{\frac{x}{x - 7}} = 4 \times \frac{x - 7}{x} = \frac{4(x - 7)}{x}
\]
4. **Expand the Numerator (Optional):**
\[
\frac{4(x - 7)}{x} = \frac{4x - 28}{x}
\]
**Final Simplified Form:**
\[
g(f(x)) = \frac{4(x - 7)}{x} = \frac{4x - 28}{x}
\]
**Summary:**
\[
\boxed{g(f(x)) = \frac{4x - 28}{x}}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To find \( g(f(x)) \), we start with the expressions for \( f(x) \) and \( g(x) \). We have: \[ f(x) = \frac{x}{x - 7} \] Now, substituting \( f(x) \) into \( g(x) \): \[ g(f(x)) = g\left(\frac{x}{x - 7}\right) = \frac{4}{\frac{x}{x - 7}} \] To simplify this, we can rewrite it: \[ g(f(x)) = 4 \cdot \frac{x - 7}{x} = \frac{4(x - 7)}{x} \] Now, expand and simplify: \[ g(f(x)) = \frac{4x - 28}{x} \] Thus, the result is: \[ g(f(x)) = 4 - \frac{28}{x} \]