Question
upstudy study bank question image url

निর্ণয় কর। Payel wants to draw three regular polygons on the three sides of an equilateral triangle. If there is one common side between each of the two polygons, then find the number of sides of each polygon drawn?

Ask by Davison Adkins. in Bangladesh
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Each polygon must have twelve sides.

Solution

To determine the number of sides each regular polygon must have, let's break down the problem step by step. ### Given: - An **equilateral triangle** with three sides. - **Three regular polygons** are to be drawn, each on one side of the triangle. - Each polygon shares one side with the triangle and one side with each of its adjacent polygons. ### Steps to Solve: 1. **Understand the Angles:** - An **equilateral triangle** has internal angles of **60 degrees** each. - Let each regular polygon have **n sides**. The internal angle \(\theta\) of a regular polygon is given by: \[ \theta = \frac{(n-2) \times 180^\circ}{n} \] 2. **Angles at Each Vertex:** - At each vertex of the triangle, two polygons meet. - The sum of the angles around a point is **360 degrees**. - Therefore, the sum of the triangle's angle and the two adjacent polygon angles at each vertex must equal 360 degrees: \[ 60^\circ + 2\theta = 360^\circ \] - Solving for \(\theta\): \[ 2\theta = 300^\circ \implies \theta = 150^\circ \] 3. **Determine the Number of Sides (n):** - Substitute \(\theta = 150^\circ\) into the internal angle formula: \[ 150^\circ = \frac{(n-2) \times 180^\circ}{n} \] - Multiply both sides by \(n\): \[ 150n = 180n - 360 \] - Rearrange and solve for \(n\): \[ 30n = 360 \implies n = 12 \] ### Conclusion: Each regular polygon drawn on the sides of the equilateral triangle must be a **dodecagon (12-sided polygon)**. **Answer:** Each polygon must have twelve sides.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

मान लीजिए कि पायेल एक समिकोन त्रिकोण के प्रत्येक भुजा पर एक नियमित बहुभुज खींचती है। चूंकि यह एक समिकोन त्रिकोण है, तो इसके तीनों किनारे समान हैं। यदि हम कहते हैं कि एक बहुभुज में \(n_1\), दूसरे में \(n_2\) और तीसरे में \(n_3\) भुजाएँ हैं, और हर दो बहुभुजों के बीच एक समान भुजा है, तो यह ध्यान देने योग्य है कि हर एक बहुभुज की एक भुजा अन्य बहुभुजों के साथ आम होती है। चूंकि ये बहुभुज नियमित हैं, हमें यह ध्यान रखना होगा कि उनका आंतरिक कोण का योग \(180^\circ\) से कम होना चाहिए। यदि हम \(n_1\), \(n_2\), और \(n_3\) को 3 से जोड़ते हैं, तो हमें बहुभुजों का सही गठन सुनिश्चित करने के लिए ऐसे \(n\) की संख्या चुननी होगी जो नियमित होते हैं। सामान्यत: एक संभव समाधान यह हो सकता है कि \(n_1 = 3\) (त्रिकोण), \(n_2 = 4\) (चौकोर), और \(n_3 = 6\) (हेक्सागन) हैं। यह सेटअप एक ऐसा आरेख बनाएगा जहाँ प्रत्येक बहुभुज एक आम भुजा साझा करेगा। इसलिए, हर बहुभुज की संख्याएँ हो सकती हैं: \(n_1 = 3\), \(n_2 = 4\), \(n_3 = 6\) (या परिवर्तनों के साथ)।

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy