Question
On considère la suite \( \left(u_{n}\right)_{n} \) detinie par : \( u_{0}=3 \) eq
\( (\forall n \in \mathbb{N}) ; u_{n+1}=\frac{8\left(u_{n}-1\right)}{u_{n}+2} \)
1. Montrer par récurrence que:
\( \qquad \forall n \in \mathbb{N}) ; 2
Ask by Evans Bryant. in Morocco
Nov 28,2024
Ask by Evans Bryant. in Morocco
Nov 28,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
1. \( 2 < u_n < 4 \) for all \( n \in \mathbb{N} \).
2. a) \( u_n \) is increasing; hence \( 3 \leq u_n < 4 \).
b) \( u_n \) is convergent.
3. a) \( 0 < 4 - u_{n+1} \leq \frac{4}{5}(4 - u_n) \).
b) \( 0 < 4 - u_n \leq \left(\frac{4}{5}\right)^{n+1} \), and \( \lim_{n \to \infty} u_n = 4 \).
4. \( v_n \) is a geometric sequence with a common ratio of \( \frac{2}{2} \).
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like
Mind Expander
Pour démontrer par récurrence que \( 2