Answer
- Solve \( f(x) \cdot g(x) \geq 0 \) by analyzing the graphs of \( f \) and \( g \) to find intervals where both functions are positive or both are negative.
- \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = 180 \)
- \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = 2 \)
- \( \lim _{x \rightarrow 6^{+}} f(x) = 2 \) and \( \lim _{x \rightarrow 6^{-}} f(x) = 2 \), so \( \lim_{x \rightarrow 6} f(x) = 2 \)
- \( \lim_{x \rightarrow 0} f(x) = 1 \)
Solution
Let's break down the problem step by step.
### Question 5: Solve \( f(x) \cdot g(x) \geq 0 \)
To solve the inequality \( f(x) \cdot g(x) \geq 0 \) using the graphs of \( f \) and \( g \), we need to identify the intervals where the product of the two functions is non-negative.
1. **Identify the zeros of \( f(x) \) and \( g(x) \)**:
- Find the points where \( f(x) = 0 \) and \( g(x) = 0 \). These points will divide the x-axis into intervals.
2. **Determine the sign of \( f(x) \) and \( g(x) \)** in each interval:
- For each interval created by the zeros, check the sign of \( f(x) \) and \( g(x) \).
- The product \( f(x) \cdot g(x) \) will be non-negative if both functions are either positive or both are negative.
3. **Combine the intervals**:
- List the intervals where \( f(x) \cdot g(x) \geq 0 \).
### Question 6: Evaluate the limits
#### 6.1 Evaluate the following limits:
(a) \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \)
To evaluate this limit, we can substitute \( x = 2 \):
\[
\lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = (2^2 + 2)(3 \cdot 2^3 + 6)
\]
Calculating this step-by-step:
1. Calculate \( 2^2 + 2 = 4 + 2 = 6 \).
2. Calculate \( 3 \cdot 2^3 + 6 = 3 \cdot 8 + 6 = 24 + 6 = 30 \).
3. Multiply the results: \( 6 \cdot 30 = 180 \).
Thus,
\[
\lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = 180.
\]
(b) \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} \)
Substituting \( u = -2 \):
\[
\lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = \sqrt{(-2)^{2} + 3(-2) + 6}
\]
Calculating this step-by-step:
1. Calculate \( (-2)^{2} = 4 \).
2. Calculate \( 3(-2) = -6 \).
3. Combine: \( 4 - 6 + 6 = 4 \).
4. Take the square root: \( \sqrt{4} = 2 \).
Thus,
\[
\lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = 2.
\]
(c) Let \( f(x)=\frac{2 x+12}{|x+6|} \)
(i) \( \lim _{x \rightarrow 6^{+}} f(x) \)
For \( x \rightarrow 6^{+} \), \( |x+6| = x + 6 \):
\[
\lim _{x \rightarrow 6^{+}} f(x) = \lim _{x \rightarrow 6^{+}} \frac{2x + 12}{x + 6} = \frac{2(6) + 12}{6 + 6} = \frac{12 + 12}{12} = \frac{24}{12} = 2.
\]
(ii) \( \lim _{x \rightarrow 6^{-}} f(x) \)
For \( x \rightarrow 6^{-} \), \( |x+6| = x + 6 \):
\[
\lim _{x \rightarrow 6^{-}} f(x) = \lim _{x \rightarrow 6^{-}} \frac{2x + 12}{x + 6} = \frac{2(6) + 12}{6 + 6} = \frac{12 + 12}{12} = \frac{24}{12} = 2.
\]
(iii) Since both one-sided limits are equal:
\[
\lim_{x \rightarrow 6} f(x) = 2.
\]
#### 6.2 Evaluate the piecewise function
For the function
\[
f(x)=\left\{\begin{array}{ccc}
\cos x & \text { if } & x<0 \\
0 & \text { if } & x=0 \\
1-x^{2} & \text { if } & x>0
\end{array}\right.
\]
To find the limit as \( x \) approaches 0:
1. From the left (\( x \rightarrow 0^{-} \)): \( f(x) = \cos x \rightarrow \cos(0) = 1 \).
2. From the right (\( x \rightarrow 0^{+} \)): \( f(x) = 1 - x^{2} \rightarrow 1 - 0^{2} = 1 \).
Since both limits are equal:
\[
\lim_{x \rightarrow 0} f(x) = 1.
\]
### Summary of Results
- \( f(x) \cdot g(x) \geq 0 \): Analyze using graphs.
- \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = 180 \)
- \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = 2 \)
- \( \lim _{x \rightarrow 6^{+}} f(x) = 2 \)
- \( \lim _{x \rightarrow 6^{-}} f(x) = 2 \)
- \( \lim_{x \rightarrow 6} f(x) = 2 \)
- \( \lim_{x \rightarrow 0} f(x) = 1 \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution