b) \( \operatorname{ctg} \alpha=\frac{1}{3} \) bolanda, \( \frac{3 \cos \alpha+2 \sin \alpha}{2 \cos \alpha-3 \sin \alpha} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let's analyze the given expression by substituting \(\operatorname{ctg} \alpha = \frac{1}{3}\). Since \(\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}\), this implies that \(\cos \alpha = \frac{1}{3} \sin \alpha\). You can express \(\sin \alpha\) in terms of \(\cos \alpha\) using Pythagoras' theorem, leading to \( \sin^2 \alpha + \cos^2 \alpha = 1\). Now, substituting \(\cos \alpha\) back into the equation will help simplify the overall expression. In terms of \(\sin \alpha\), we can write: 1. Start with \(\sin \alpha = y\). 2. \(\cos \alpha = \frac{1}{3} y\). 3. Substitute these into the expression: \[ \frac{3 \left(\frac{1}{3} y\right) + 2y}{2 \left(\frac{1}{3} y\right) - 3y} = \frac{y + 2y}{\frac{2}{3}y - 3y} = \frac{3y}{\frac{2y - 9y}{3}} = \frac{3y}{-\frac{7y}{3}} = -\frac{9}{7}. \] So, the overall result for the expression \(\frac{3 \cos \alpha + 2 \sin \alpha}{2 \cos \alpha - 3 \sin \alpha}\) is \(-\frac{9}{7}\).