Question
upstudy study bank question image url

b) \( \operatorname{ctg} \alpha=\frac{1}{3} \) bolanda, \( \frac{3 \cos \alpha+2 \sin \alpha}{2 \cos \alpha-3 \sin \alpha} \)

Ask by Fowler Vega. in Turkmenistan
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{3 \cos \alpha + 2 \sin \alpha}{2 \cos \alpha - 3 \sin \alpha} = -\frac{9}{7} \]

Solution

Дано: \(\cot \alpha = \frac{1}{3}\). Необходимо найти значение выражения: \[ \frac{3 \cos \alpha + 2 \sin \alpha}{2 \cos \alpha - 3 \sin \alpha} \] **Решение:** 1. Из условия \(\cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{1}{3}\) следует, что: \[ \cos \alpha = \frac{1}{3} \sin \alpha \] 2. Подставим выражение для \(\cos \alpha\) в числитель и знаменатель исходного дроби: - Числитель: \[ 3 \cos \alpha + 2 \sin \alpha = 3 \left( \frac{1}{3} \sin \alpha \right) + 2 \sin \alpha = \sin \alpha + 2 \sin \alpha = 3 \sin \alpha \] - Знаменатель: \[ 2 \cos \alpha - 3 \sin \alpha = 2 \left( \frac{1}{3} \sin \alpha \right) - 3 \sin \alpha = \frac{2}{3} \sin \alpha - 3 \sin \alpha = \left( \frac{2}{3} - 3 \right) \sin \alpha = -\frac{7}{3} \sin \alpha \] 3. Теперь подставим полученные выражения в исходную дробь: \[ \frac{3 \sin \alpha}{ -\frac{7}{3} \sin \alpha } = 3 \sin \alpha \times \left( -\frac{3}{7} \right) \frac{1}{\sin \alpha} = -\frac{9}{7} \] **Ответ:** \(-\frac{9}{7}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's analyze the given expression by substituting \(\operatorname{ctg} \alpha = \frac{1}{3}\). Since \(\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}\), this implies that \(\cos \alpha = \frac{1}{3} \sin \alpha\). You can express \(\sin \alpha\) in terms of \(\cos \alpha\) using Pythagoras' theorem, leading to \( \sin^2 \alpha + \cos^2 \alpha = 1\). Now, substituting \(\cos \alpha\) back into the equation will help simplify the overall expression. In terms of \(\sin \alpha\), we can write: 1. Start with \(\sin \alpha = y\). 2. \(\cos \alpha = \frac{1}{3} y\). 3. Substitute these into the expression: \[ \frac{3 \left(\frac{1}{3} y\right) + 2y}{2 \left(\frac{1}{3} y\right) - 3y} = \frac{y + 2y}{\frac{2}{3}y - 3y} = \frac{3y}{\frac{2y - 9y}{3}} = \frac{3y}{-\frac{7y}{3}} = -\frac{9}{7}. \] So, the overall result for the expression \(\frac{3 \cos \alpha + 2 \sin \alpha}{2 \cos \alpha - 3 \sin \alpha}\) is \(-\frac{9}{7}\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy