Question
upstudy study bank question image url

(5) \( \lim _{x \rightarrow \infty} \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x} \cdot \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}} \)

Ask by Alexander Thornton. in Israel
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

הגבול הוא \(\frac{1}{2}\).

Solution

כדי לחשב את הגבול \[ \lim _{x \rightarrow \infty} \left( \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} \right) \cdot \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}, \] נבחן תחילה את הביטוי שבתוך הגבול: \[ \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x}. \] כדי לפשט את הביטוי, נכפיל ונחלק בביטוי ההופכי: \[ \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} = \frac{\left( \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} \right) \left( \sqrt{x+\sqrt{x+\sqrt{x}}} + \sqrt{x} \right)}{\sqrt{x+\sqrt{x+\sqrt{x}}} + \sqrt{x}}. \] הכפל שבמונה נותן: \[ (\sqrt{x+\sqrt{x+\sqrt{x}}})^2 - (\sqrt{x})^2 = x + \sqrt{x+\sqrt{x}} - x = \sqrt{x+\sqrt{x}}. \] ולכן הביטוי הופך ל: \[ \frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}} + \sqrt{x}}. \] כעת, נחשב את הגבול כאשר \( x \) שואף לאינסוף. נשים לב שכאשר \( x \) גדול מאוד: \[ \sqrt{x} \gg \sqrt{x+\sqrt{x}} \quad \text{ו-} \quad \sqrt{x+\sqrt{x+\sqrt{x}}} \approx \sqrt{x}. \] לכן: \[ \sqrt{x+\sqrt{x}} \approx \sqrt{x} \quad \text{ו-} \quad \sqrt{x+\sqrt{x+\sqrt{x}}} + \sqrt{x} \approx 2\sqrt{x}. \] כך שהגבול מתקרב ל: \[ \lim_{x \to \infty} \frac{\sqrt{x}}{2\sqrt{x}} = \frac{1}{2}. \] לסיכום, הגבול המבוקש הוא: \[ \boxed{\dfrac{1}{2}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the limit \[ \lim_{x \rightarrow \infty} \left( \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} \right) \] we start by expressing the term under the limit in a more manageable form. The phrase can be rewritten as: \[ \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} = \frac{(\sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x})(\sqrt{x+\sqrt{x+\sqrt{x}}} + \sqrt{x})}{\sqrt{x+\sqrt{x+\sqrt{x}}} + \sqrt{x}} \] However, it’s easier to focus directly on the limit itself. First, let's simplify \( \sqrt{x+\sqrt{x+\sqrt{x}}} \) as \( x \to \infty \). 1. Note that \( \sqrt{x+\sqrt{x+\sqrt{x}}} \) can be approximated: \[ \sqrt{x+\sqrt{x+\sqrt{x}}} \approx \sqrt{x+\sqrt{x}} = \sqrt{x + x^{1/2}} = \sqrt{x(1+x^{-1/2})} \] As \( x \to \infty \), \( x^{-1/2} \) approaches 0, so we approximate: \[ \sqrt{1+x^{-1/2}} \approx 1 + \frac{1}{2} x^{-1/2} \] Thus, \[ \sqrt{x+\sqrt{x+\sqrt{x}}} \approx \sqrt{x} (1 + \frac{1}{2} x^{-1/2}) = \sqrt{x} + \frac{1}{2} \] So, \[ \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} \approx \frac{1}{2} \] Consequently, we find: \[ \lim_{x \to \infty} \left( \sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} \right) = \frac{1}{2} \] Therefore, the limit evaluates to: \[ \boxed{\frac{1}{2}} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy