Answer
a) 49
b) 29
c) 61
d) 680
e) 137
f) 185
g) 37
h) -156
i) 1751
j) 365
Solution
Calculate the value by following steps:
- step0: Calculate:
\(7+3^{2}+\left(5+8\right)\)
- step1: Add the numbers:
\(7+3^{2}+13\)
- step2: Evaluate the power:
\(7+9+13\)
- step3: Add the numbers:
\(29\)
Calculate or simplify the expression \( 5-7\{1+8[3]-2\} \).
Calculate the value by following steps:
- step0: Calculate:
\(5-7\left(1+8\times 3-2\right)\)
- step1: Multiply the numbers:
\(5-7\left(1+24-2\right)\)
- step2: Calculate:
\(5-7\times 23\)
- step3: Multiply the numbers:
\(5-161\)
- step4: Subtract the numbers:
\(-156\)
Calculate or simplify the expression \( 1+4[3+2(4+2)] \).
Calculate the value by following steps:
- step0: Calculate:
\(1+4\left(3+2\left(4+2\right)\right)\)
- step1: Add the numbers:
\(1+4\left(3+2\times 6\right)\)
- step2: Multiply the numbers:
\(1+4\left(3+12\right)\)
- step3: Add the numbers:
\(1+4\times 15\)
- step4: Multiply the numbers:
\(1+60\)
- step5: Add the numbers:
\(61\)
Calculate or simplify the expression \( 15+4^{2}*2+\sqrt{4} \).
Calculate the value by following steps:
- step0: Calculate:
\(15+4^{2}\times 2+\sqrt{4}\)
- step1: Simplify the root:
\(15+4^{2}\times 2+2\)
- step2: Multiply the terms:
\(15+32+2\)
- step3: Add the numbers:
\(49\)
Calculate or simplify the expression \( 5+25\{1+2[3+2(6)]-4\} \).
Calculate the value by following steps:
- step0: Calculate:
\(5+25\left(1+2\left(3+2\times 6\right)-4\right)\)
- step1: Multiply the numbers:
\(5+25\left(1+2\left(3+12\right)-4\right)\)
- step2: Add the numbers:
\(5+25\left(1+2\times 15-4\right)\)
- step3: Multiply the numbers:
\(5+25\left(1+30-4\right)\)
- step4: Calculate:
\(5+25\times 27\)
- step5: Multiply the numbers:
\(5+675\)
- step6: Add the numbers:
\(680\)
Calculate or simplify the expression \( 9+2\{1+5+2(3+2)-2\} \).
Calculate the value by following steps:
- step0: Calculate:
\(9+2\left(1+5+2\left(3+2\right)-2\right)\)
- step1: Add the numbers:
\(9+2\left(1+5+2\times 5-2\right)\)
- step2: Multiply the numbers:
\(9+2\left(1+5+10-2\right)\)
- step3: Calculate:
\(9+2\times 14\)
- step4: Multiply the numbers:
\(9+28\)
- step5: Add the numbers:
\(37\)
Calculate or simplify the expression \( 1+7\{2+9[8+2(3+7)]-4\} \).
Calculate the value by following steps:
- step0: Calculate:
\(1+7\left(2+9\left(8+2\left(3+7\right)\right)-4\right)\)
- step1: Add the numbers:
\(1+7\left(2+9\left(8+2\times 10\right)-4\right)\)
- step2: Multiply the numbers:
\(1+7\left(2+9\left(8+20\right)-4\right)\)
- step3: Add the numbers:
\(1+7\left(2+9\times 28-4\right)\)
- step4: Multiply the numbers:
\(1+7\left(2+252-4\right)\)
- step5: Calculate:
\(1+7\times 250\)
- step6: Multiply the numbers:
\(1+1750\)
- step7: Add the numbers:
\(1751\)
Calculate or simplify the expression \( 8+7\{1+4[3+2(3+2)]-2\} \).
Calculate the value by following steps:
- step0: Calculate:
\(8+7\left(1+4\left(3+2\left(3+2\right)\right)-2\right)\)
- step1: Add the numbers:
\(8+7\left(1+4\left(3+2\times 5\right)-2\right)\)
- step2: Multiply the numbers:
\(8+7\left(1+4\left(3+10\right)-2\right)\)
- step3: Add the numbers:
\(8+7\left(1+4\times 13-2\right)\)
- step4: Multiply the numbers:
\(8+7\left(1+52-2\right)\)
- step5: Calculate:
\(8+7\times 51\)
- step6: Multiply the numbers:
\(8+357\)
- step7: Add the numbers:
\(365\)
Calculate or simplify the expression \( 4+7\{1+4[3+2]-2\} \).
Calculate the value by following steps:
- step0: Calculate:
\(4+7\left(1+4\left(3+2\right)-2\right)\)
- step1: Add the numbers:
\(4+7\left(1+4\times 5-2\right)\)
- step2: Multiply the numbers:
\(4+7\left(1+20-2\right)\)
- step3: Calculate:
\(4+7\times 19\)
- step4: Multiply the numbers:
\(4+133\)
- step5: Add the numbers:
\(137\)
Calculate or simplify the expression \( 8+3\{4[5+2(3+2)]-1\} \).
Calculate the value by following steps:
- step0: Calculate:
\(8+3\left(4\left(5+2\left(3+2\right)\right)-1\right)\)
- step1: Add the numbers:
\(8+3\left(4\left(5+2\times 5\right)-1\right)\)
- step2: Multiply the numbers:
\(8+3\left(4\left(5+10\right)-1\right)\)
- step3: Add the numbers:
\(8+3\left(4\times 15-1\right)\)
- step4: Multiply the numbers:
\(8+3\left(60-1\right)\)
- step5: Subtract the numbers:
\(8+3\times 59\)
- step6: Multiply the numbers:
\(8+177\)
- step7: Add the numbers:
\(185\)
Aquí están los resultados de los cálculos:
a) \( 15 + 4^{2} \times 2 + \sqrt{4} = 49 \)
b) \( 7 + 3^{2} + (5 + 8) = 29 \)
c) \( 1 + 4[3 + 2(4 + 2)] = 61 \)
d) \( 5 + 25\{1 + 2[3 + 2(6)] - 4\} = 680 \)
e) \( 4 + 7\{1 + 4[3 + 2] - 2\} = 137 \)
f) \( 8 + 3\{4[5 + 2(3 + 2)] - 1\} = 185 \)
g) \( 9 + 2\{1 + 5 + 2(3 + 2) - 2\} = 37 \)
h) \( 5 - 7\{1 + 8[3] - 2\} = -156 \)
i) \( 1 + 7\{2 + 9[8 + 2(3 + 7)] - 4\} = 1751 \)
j) \( 8 + 7\{1 + 4[3 + 2(3 + 2)] - 2\} = 365 \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution