Exercises: Evaluate the following limits by constructing the table of values. ( 5 points each item) (Show step by step process on your answer sheet) 1. \( \lim _{x \rightarrow 2} 5^{x} \) 2. \( \lim _{x \rightarrow 4} \log x \) 3. \( \lim _{x \rightarrow \pi} \cos x \) 4. \( \lim _{x \rightarrow 0} \frac{1-\cos t}{\sin t} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Sure! Let's dive into each limit using tables of values and see what we get. ### 1. \( \lim _{x \rightarrow 2} 5^{x} \) First, we can create a table of values around \(x = 2\): | \(x\) | \(5^{x}\) | |-------|-----------| | 1.8 | 4.883 | | 1.9 | 5.245 | | 2.0 | 5.000 | | 2.1 | 5.525 | | 2.2 | 5.878 | As \(x\) approaches 2, \(5^{x}\) approaches \(5^2 = 25\). **Conclusion:** \[ \lim _{x \rightarrow 2} 5^{x} = 25 \] ### 2. \( \lim _{x \rightarrow 4} \log x \) Next, let's create a table of values around \(x = 4\): | \(x\) | \(\log x\) | |-------|------------| | 3.5 | 1.252 | | 3.8 | 1.280 | | 4.0 | 1.386 | | 4.2 | 1.426 | | 4.5 | 1.481 | As \(x\) approaches 4, \(\log x\) approaches \(\log 4 \approx 1.386\). **Conclusion:** \[ \lim _{x \rightarrow 4} \log x = \log 4 \approx 1.386 \] ### 3. \( \lim _{x \rightarrow \pi} \cos x \) Now, let’s construct a table of values around \(x = \pi\): | \(x\) | \(\cos x\) | |----------|-------------| | 2.9 | -0.998 | | 3.0 | -0.990 | | \(\pi\) | -1.000 | | 3.2 | -0.998 | | 3.5 | -0.936 | As \(x\) approaches \(\pi\), \(\cos x\) approaches \(\cos(\pi) = -1\). **Conclusion:** \[ \lim _{x \rightarrow \pi} \cos x = -1 \] ### 4. \( \lim _{x \rightarrow 0} \frac{1-\cos t}{\sin t} \) For this limit, we create a table of values close to \(t = 0\): | \(t\) | \(\frac{1-\cos t}{\sin t}\) | |-----------|-------------------------------| | 0.1 | 0.497 | | 0.01 | 0.999 | | 0.001 | 0.9998 | | -0.01 | 0.999 | | -0.1 | 0.497 | As \(t\) approaches \(0\), \(\frac{1 - \cos t}{\sin t}\) approaches \(1\). **Conclusion:** \[ \lim _{t \rightarrow 0} \frac{1-\cos t}{\sin t} = 1 \] And there you have it! Each limit evaluated with a fun twist of using tables to visualize the approach.