Find the exact value of the expression. \( \csc \left(\frac{\pi}{3}\right)= \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
The cosecant function is the reciprocal of the sine function. We know that \( \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \). Thus, to find \( \csc \left( \frac{\pi}{3} \right) \), we take the reciprocal of \( \sin \left( \frac{\pi}{3} \right) \): \[ \csc \left( \frac{\pi}{3} \right) = \frac{1}{\sin \left( \frac{\pi}{3} \right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] To make it neater, we can rationalize the denominator: \[ \csc \left( \frac{\pi}{3} \right) = \frac{2 \cdot \sqrt{3}}{3} \] So, the exact value of \( \csc \left( \frac{\pi}{3} \right) \) is \( \frac{2 \sqrt{3}}{3} \).